
*
925-294-2470, rob@sandia.gov

 Advanced Scientific Computing Research
Computer Science

FY 2005 Accomplishment

Enhancing Performance and Productivity Using the CCA

B. Norris, L. McInnes (ANL); W. Elwasif, T. Wilde (ORNL);
J. Nieplocha (PNNL); B. Allan, R. Armstrong*, J. Ray (SNL);

Collaborators: A. Malony, S. Shende, N. Trebon (Univ. Oregon)

Summary

A primary goal of component-based software design is to enhance developer productivity and
application performance. As various scientific application groups adopt the Common

Component Architecture (CCA) paradigm, the Center for Component Technology for Terascale
Simulation Software (CCTTSS) strives to ensure that such benefits are realized in the scientific

arena. We summarize the various mechanisms by which these enhancements are being
actualized by CCA users.

Taming Software Complexity
One of the simplifications afforded by any
kind of modularization is the creation of
logically consistent software “modules” or
components, which individually are not
overwhelmingly complex. Such
componentization enhances innovation in
several ways: (1) because individual
components are more easily comprehended,
the development of new and efficient
algorithms is encouraged; (2) larger and mode
complex component assemblies become
feasible because they can still be grasped by
developers; and (3) individual components
can be assembled in novel ways. To quantify
the software structure of a component-based
toolkit for large-scale combustion
simulations, researchers in the Computational
Facility for Reacting Flow Science (CFRFS)
SciDAC project performed a statistical
analysis of their code. The bulk of the
components were found to contain less than
1,000 lines. Most components had 1 or 2
interfaces and used interfaces from 1 or 2
other components. Interfaces typically had 8
or fewer functions. This analysis indicates a
design with sparse interfaces, simple
components, and sparse component
connectivity, which are characteristics of

codes built hierarchically through the
integration of component sub-systems. Such
a locality-preserving design allows new
researchers to contribute quickly, by simply
restricting their knowledge of the software to
a particular subassembly.

Proxy-Based Code Analysis
Component-based environments offer a
unique opportunity to provide analysis
capabilities at component granularity, which
are non-intrusive and language independent.
By inserting automatically-generated proxies
into the connections between components, a
wide range of performance, debugging, or
other information can be collected without the
need to modify any user software. A proxy-
based solution has been applied by CFRFS,
CCTTSS, and SciDAC Performance
Evaluation Research Center (PERC)
researchers to the performance measurement
and modeling of a combustion code. Proxies
sit between components to control when
performance data is logged and utilize another
component based on the Tuning and Analysis
Utilities (TAU) library to actually collect the
performance data. Instrumenting a CCA
application can be as simple as adding the
performance measurement subassembly and

inserting proxies at the point of interest. The
same mechanism can be exploited by a
PortMonitor proxy to log component
invocation information, such as arguments.
Logged data can be manipulated, analyzed,
and even replayed to the component for
debugging and testing purposes.

Computational Quality of Service (CQoS)
One of the most significant benefits of
components is the use of common interfaces
for multiple algorithms and implementations
that are functionally equivalent, but may
differ in accuracy, stability, or performance.
A key challenge in component-based
scientific applications is selecting the set of
components that best satisfy a set of
application-specific quality requirements.
These can be traditional metrics, such as
overall time to solution, or more algorithm-
specific requirements, such as numerical
gradient accuracy. As part of our
collaborative work with the SciDAC PERC
project, we have developed an infrastructure
(Figure 1) based on runtime monitoring
(using TAU) and logging of relevant metrics
from a simulation in a low-overhead runtime
database. This information can then be
exploited to choose and configure linear
solvers for the numerical solution of nonlinear
partial differential equations used to describe
complex physical processes. We also
developed a larger but slower database to
archive historical runtime information to
conduct offline analyses, refine the
parameterization of solvers, and develop
automatic, adaptive solver strategies.

Productivity
The CCA is developing mechanisms that
automate and encapsulate many of the routine
and mechanical aspects of component code
development and deployment. We are
augmenting the Eclipse integrated
development environment platform with tools
for developing SIDL-based CCA ports and
components. This high-level graphical
interface also provides guidance to users who
are not accustomed to the component style of

programming. Other areas under development
include automated build support for
components as well as interface generation to
facilitate use of legacy code in the CCA
environment.

High-Level Abstractions for Managing
Multilevel Parallelism
High-level abstractions can improve
programmer productivity and provide
opportunities for performance optimizations
in the underlying implementations. CCTTSS
researchers have been developing high-level
abstractions for parallel programming based
on Global Arrays’ shared/distributed array
ideas in the context of the CCA. One of the
important research goals is to exploit multiple
levels of parallelism available in modern
scientific applications without substantial
modifications of the existing applications.
These ideas have been applied in
computational chemistry, with a factor of ten
performance improvement on one problem.

For further information on this subject contact:

Rob Armstrong (CCTTSS PI)
Sandia National Laboratories
Livermore, CA 94551
Email: rob@sandia.gov
Phone: 925-294-2470
http://www.cca-forum.org

Application Components

Runtime
Database

Adaptive Strategies

 Runtime CQoS Infrastructure

Monitoring

Persistent
Database

DB Access Analyses

Figure 1.
Infrastructure for
CQoS in scientific
component
applications.

