
P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Journal of VLSI Signal Processing 41, 193–207, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Memory Performance Optimizations for Real-Time
Software HDTV Decoding

1

2

HAN CHEN∗3
IBM TJ Watson Research Center, 19 Skyline Dr, Hawthorne, NY 10532, USA4

KAI LI5
Princeton University, 35 Olden St, Princeton, NJ 08544, USA6

BIN WEI7
AT&T Labs Research, 180 Park Ave, Florham Park, NJ 07932, USA8

Received February 13, 2003; Revised February 12, 2004; Accepted July 30, 20049

Abstract. Pure software HDTV video decoding is still a challenging task on entry-level to mid-range desktop
and notebook PCs, even with today’s microprocessors frequency measured in GHz. This paper shows that the
performance bottleneck in a software MPEG-2 decoder has been shifted to memory operations, as microprocessor
technologies including multimedia instruction extensions have been improving at a fast rate during the past years.

10
11
12
13

Our study exploits concurrencies at macroblock level to alleviate the performance bottleneck in a software
MPEG-2 decoder. First, the paper introduces an interleaved block-order data layout to improve CPU cache per-
formance. Second, the paper describes an algorithm to explicitly prefetch macroblocks for motion compensation.
Finally, the paper presents an algorithm to schedule interleaved decoding and output at macroblock level. Our im-
plementation and experiments show that these methods can effectively hide the latency of memory and frame buffer.
The optimizations improve the performance of a multimedia-instruction-optimized software MPEG-2 decoder by
a factor of about two. On a PC with a 933 MHz Pentium III CPU, the decoder can decode and display 1280 ×
720-resolution HDTV streams at over 62 frames per second.

14
15
16
17
18
19
20
21

Keywords: MPEG-2, decompression, motion compensation, concurrency, CPI, cache, locality, prefetching22

1. Introduction23

Pure software-based video decoding has the advan-24
tage of being cost-effective and tracking technology25
well. With microprocessor frequency measured in GHz26
and various multimedia instruction extensions, soft-27
ware decoding of DVD or TV resolution contents with-28
out hardware support has become commonplace on to-29
day’s desktop and notebook computers. However, for30

∗This work was done while the author was a Ph.D. candidate in the
Computer Science Department of Princeton University.

high resolution HDTV decoding, some assistance from 31
a powerful graphics accelerator is still needed. This 32
paper presents methods to optimize a pure software 33
MPEG-2 decoder to achieve the required frame rates 34
of HDTV on a low-end PC. 35

In the past, the key to improving the performance 36
of software decoding has been to develop ways to sat- 37
isfy its computational requirements. Much of the previ- 38
ous work on improving software MPEG decoding [1] 39
has focused on multimedia instruction extensions and 40
effective ways of using such instructions to optimize 41
certain core functions [2–5]. As memory performance 42



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

194 Chen, Li and Wei

has been improving at a much slower rate than the mi-43
croprocessor during the past decades, the performance44
bottleneck of a software decoder has now been shifted45
to memory operations.46

To understand the extent of the problem, we analyzed47
the distribution of Cycles-Per-Instruction (CPI) [6] of48
a software MPEG-2 decoder optimized by extensive49
use of MultiMedia eXtension (MMX) and Streaming50
SIMD Extensions (SSE) instructions [7], we found that51
the stalling of memory operations increases the CPI sig-52
nificantly in memory-intensive functions. On a PC with53
a 933 MHz Pentium III CPU, the average CPI of mo-54
tion compensation is 1.81 and that of display is 10.57.55
These are several times more than the average CPI of56
0.57 for the computation-intensive IDCT functions.57

Our approach to solving the memory performance58
bottleneck problem is to exploit the concurrency be-59
tween the CPU and the memory sub-system in a mod-60
ern computer. We first introduce a new frame buffer61
layout, called Interleaved Block-Order (IBO), for the62
software MPEG-2 decoder to improve the CPU’s cache63
performance. We then describe an algorithm to explic-64
itly prefetch macroblocks for motion compensation. Fi-65
nally, we present an algorithm to schedule interleaved66
decoding and output at macroblock level.67

We implemented our proposed methods on a PC plat-68
form that has a 933 MHz Pentium III CPU. Our tests69
with several DVD and HDTV streams show that the70
optimizations improve the performance of a software71
decoder already extensively optimized with multime-72
dia instructions by another factor of two. Our optimiza-73
tions successfully reduce the CPIs of memory-intensive74
functions. The CPI of motion compensation functions75
is reduced to 0.7 and the CPI of display function is76
reduced to 1.07. As a result, the improved software de-77
coder decodes and displays 720p (1280 × 720) format78
HDTV streams at over 62 frames per second.79

The rest of the paper is organized as follows.80
Section 2 provides a brief overview of the MPEG-81
2 video compression standard and discusses previ-82
ous related work in software decoding. Section 3 de-83
scribes the methodology and our testing environments.84
Section 4 analyzes various components of a software85
decoder and identifies the bottleneck in it. Section 586
presents and evaluates our optimization techniques in87
detail. Finally, Section 6 summarizes our study.88

2. Background and Related Work89

Due to the overwhelming amount of data present in dig-90
ital videos, it is impractical to store and transmit them in91

their raw format, except in places where absolute qual- 92
ity is required, such as mastering studio. Video com- 93
pression technologies are used to significantly reduce 94
the size of a digital video without noticeably degrad- 95
ing its visual quality. There are many video compres- 96
sion methods available, such as Motion JPEG, MPEG- 97
1 [8], MPEG-2 [9], MPEG-4 [10], H.261 [11], H.263 98
[12], H.264 [13], etc. Because of its good compression 99
rate, and high visual quality, MPEG-2 is the basis for 100
some of the most widely used digital video technolo- 101
gies today, such as Digital Video Disc, Direct Satellite 102
System, Digital Video Broadcasting, High Definition 103
Television, etc. Therefore, we focus our study of mem- 104
ory performance on MPEG-2. Many of the properties 105
of MPEG-2 video streams also apply to other compres- 106
sion methods. 107

2.1. MPEG-2 Overview 108

MPEG-2 is a set of ISO standards for compressing dig- 109
ital video and audio. It consists of a video compression 110
standard, an audio compression standard, and a system 111
layer standard for multiplexing them. To achieve max- 112
imum compression ratio, MPEG-2 video compression 113
removes both temporal and spatial redundancies from 114
the video data. 115

In encoding a video stream, an encoder first converts 116
pixels in a picture into YCrCb color space with optional 117
subsampling of chroma signals. Depending on the in- 118
put source of video, a picture can be either a frame in 119
a progressive sequence or a field in a non-progressive 120
sequence. A picture is then divided into 8 × 8 size 121
blocks. Four luma blocks along with 2, 4, or 8 chroma 122
blocks are grouped together to form a macroblock, for 123
4:2:0, 4:2:2 or 4:4:4 subsampling scheme respectively. 124
A number of consecutive macroblocks can be grouped 125
together to form a slice. Figure 1 illustrates this hierar- 126
chy of syntactic elements. 127

There are three types of pictures in an MPEG-2 video 128
stream: Intra (I), Predicted (P) and Bi-directional pre- 129
dicted (B). MPEG-2 compresses an I-picture in the 130
same way as JPEG does. It performs Discrete Cosine 131

Picture Slice Macroblock

Blocks

Cr CbY Y

YY

Figure 1. Elements in an MPEG-2 video stream.



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 195

Figure 2. A series of pictures.

Transform (DCT) on a block basis, and uses Quantiza-132
tion and Run Length Encoding (RLE) to remove spatial133
redundancy. Motion Estimation is used to further re-134
move temporal redundancy. In P- and B-pictures, one135
to four Motion Vectors can used to predict each mac-136
roblock from previous reference pictures; the residual137
(or difference) is then DCT coded. A series of I-, P-,138
and B-pictures are grouped together to form a Group139
of Pictures (GOP), which, in turn, forms a sequence,140
as illustrated in Fig. 2.141

2.2. Related Work142

Patel et al. first investigated the performance of a soft-143
ware MPEG-1 video decoder [1], which was later com-144
monly referred to as the “Berkeley Code.” Because of145
the lack of hardware color space conversion and true-146
color display, much effort was directed to optimizing147
dithering performance.148

During the past few years, much work has focused149
on introducing and using multimedia instructions. In150
1995, Lee published her MPEG-1 video decoder on151
a HP PA-RISC processor with multimedia instruc-152
tion extensions [3]. Her decoder was able to achieve153
real time MPEG-1 decoding on an HP712 worksta-154
tion. Zhou et al. discussed MPEG-1 decoding on a155
Sun UltraSPARC with VIS extensions [5]. With the156
growing popularity of DVD, several companies such157
as CineMaster, Cyberlink, InterVideo, and Xing de-158
veloped software DVD players for desktop PCs. Re-159
cently, Tung et al. studied MMX optimizations for soft-160
ware MPEG-2 decoding and did a performance evalu-161
ation based on Cyberlink’s old non-MMX decoder [4].162
Rahaganathan et al. evaluated the performance ben-163
efits of multimedia extensions on different processor164
architectures [14]. Their benchmarks showed the per-165
formance speedups could be close to two.166

There is a large body of literature on the topic of167
improving caching locality. Early research efforts have168
proposed ways of rearranging data structures and alter-169

ing algorithms to reduce page faulting in virtual mem- 170
ory [15, 16]. Tiling has become a well known software 171
technique for using the memory hierarchy effectively 172
[17–19]. It can be applied to any levels of memory hier- 173
archy, including virtual memory, caches, and registers. 174
Philbin et al. [20] also proposed fine granularity thread 175
scheduling for improving data cache locality. These 176
efforts targeted primarily to scientific programs. They 177
have not investigated how to rearrange data structures 178
and algorithms for software MPEG decoders. 179

Software and hardware prefetching techniques have 180
been well studied in the past to address the issue of the 181
widening gap between the performance of processor 182
and memory. Early hardware prefetching techniques 183
[21, 22] only work for programs with sequential ac- 184
cesses. Reference prediction table based preloading 185
mechanism [23, 24] was proposed by Baer et al. Klaiber 186
et al. [25] and Callahan et al. [26] studied software 187
controlled prefetching, and Mowry et al. [27, 28] pro- 188
posed compiler based algorithm for automatic insertion 189
of prefetching instructions. Ranganathan et al. studied 190
the interactions of software prefetching with ILP pro- 191
cessors [29]. 192

Most such studies are targeted for general purpose 193
applications. Soderquist and Leeser [30] studied the 194
data cache performance of software MPEG-2 video de- 195
coders with a hardware simulator. Their paper proposed 196
a few architectural methods to improve the perfor- 197
mance of a software MPEG-2 decoder. However, their 198
paper did not provide implementation or simulation re- 199
sults of these methods. Zucker et al. studied several 200
prefetching techniques for MPEG-2 video decoding 201
[31–34]. Their studies focused on hardware prefetch- 202
ing or compiler based software prefetching techniques. 203
Cucchiara et al. [35, 36] recently also proposed several 204
other architectural ideas to improve multimedia appli- 205
cations. These studies did not address the issues of how 206
to reorganize data structures and algorithms to exploit 207
concurrency between CPU, memory subsystem, and 208
frame buffer at macroblock level. 209

Hardware-based simultaneous multi-threading was 210
recently introduced to general purpose processors. 211
Chen et al. [37] and Peng et al. [38] studied its im- 212
pact on multimedia applications. 213

3. Methodology and Environments 214

Our study uses Cycles-Per-Instruction as a measure to 215
see how well the instructions in the core functions of a 216
software decoder perform. This is a well known method 217



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

196 Chen, Li and Wei

in computer architecture research to understand the de-218
gree of instruction level parallelism [6]. We caution219
that, although it is a very powerful tool, CPI can not220
be used directly as a performance metric in this study,221
because the program itself is changed between opti-222
mization steps. We use the final decoding frame rate223
as the performance metric and CPI only as an indica-224
tor for identifying performance bottlenecks and thus225
optimization opportunities in the decoder. This section226
describes the hardware platform, software tools, and227
video streams used in our tests.228

3.1. Software Tools and Measurements229

We use a commonly available commercial C++ com-230
piler [39] to develop the software decoder. Maxi-231
mum speed optimization option is used to compile232
all the programs. There are many profiling tools avail-233
able. Roughly speaking, they fall into two categories:234
procedure-based profiling and time-based. Procedure-235
based profiling tools such as XProfile and gprof re-236
quires special compiler-based instrumentation, which237
generates measuring overheads and can significantly238
skew the timing results for frequently used short func-239
tions. Time- based profiling tools such as tprof, col-240
lects samples of the program counter at regular inter-241
vals. The execution time of a function is then deduced242
from the number of samples that fall into the address243
range of this function. Time-based profiling typically244
generates no measuring overhead and can exclude in-245
terrupts properly. We use VTune 4.0 [40], a commer-246
cially available time-based profiler for x86 processors,247
to estimate the CPI for functions with sequential or iter-248
ative structures. The CPI of a function is calculated as249
follows:250

CPI = Ft

nI
,

where F is the CPU clock frequency, t is the time251
spent in the measured function, n is the call count252
of the function, and I is the number of instructions253
in the function. We obtained n by using the profiling254
tool in VTune, I by hand counting (since VTune 4.0255
does not have such a feature1), and t by VTune’s time256
measure.257

We also use CyberLink’s PowerDVD version 2.55,258
a popular commercial software DVD player, for com-259
parison purpose. Since the display rate of PowerDVD260
cannot be manually controlled, we used VTune to mea-261
sure the total time, tD , spent in its decoder module. Then262

we calculated the effective frame rate by dividing the 263
total number of frames f by tD . 264

fps = f/tD

3.2. Test Platform 265

Our test PC has a 933 MHz Pentium III processor, 256 266
MB of PC133 SDRAM, and an NVIDIA GeForce256 267
AGP 4X graphics card. The PC runs Windows 2000 268
Professional. DirectX 7.0 is used for direct frame buffer 269
access. 270

Our tests do not use any built-in hardware support for 271
MPEG-2 video decoding in the graphics card; we only 272
used the hardware color space conversion feature. To do 273
this, we use a DirectDraw overlay surface with YUYV 274
pixel format to display the video frames. YCrCb to 275
RGB conversion is performed by the overlay hardware 276
in real-time. We remark that, when memory consump- 277
tion is concerned, YUYV is a sub-optimal format for 278
4:2:0 video. It uses 16 bits for every pixel, while only 279
12 bits are needed. In effect, we upsample the 4:2:0 280
video to 4:2:2. Although the video quality is not im- 281
proved in this process, we choose this format because 282
of its ubiquity. 283

3.3. Test Sequences 284

To test the performance of a decoder at different resolu- 285
tions, we use several MPEG-2 streams. We chose four 286
720 × 480 and 1280 × 720 resolution video streams, 287
as shown in Table 1, to represent mainstream DVD and 288
high-end HDTV applications. 289
Spr and matrix are two clips from the movies Sav- 290

ing Private Ryan and The Matrix. The fish clip is a 291
shot of fish tank taken using an HDTV video camera, 292
courtesy of Intel Microprocessor Research Lab. Fox5 293
is a clip recorded from the HDTV broadcast of FOX5 294
station of New York City. 295

Table 1. Test MPEG-2 video streams.

Frames
Size

Stream Resolution I P B Total (MB)

spr 720 × 480 213 631 1,670 2,514 58.7

matrix 720 × 480 194 580 1,546 2,320 57.5

fish 1,280 × 720 27 240 505 772 27.3

fox5 1,280 × 720 24 216 480 720 22.5



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 197

IDCT Motion Comp.

Reference
Frames

DisplayVLD/IQ
Bitstream Coefficients Residuals Pixels

Figure 3. Block diagram of a typical software MPEG-2 video decoder.

4. Performance Bottleneck296

To identify the performance bottlenecks in a decoder,297
we profile a software MPEG-2 video decoder that has298
been optimized by extensive use of the MMX/SSE in-299
structions. In order to calibrate its performance, we300
compare the decoder with the PowerDVD software301
player. Our results show that the performance bottle-302
neck is at memory operations in memory intensive303
functions including motion compensation and display.304

4.1. The Baseline MPEG-2 Video Decoder305

The baseline software decoder used in our experiments306
is an MPEG-2 video codec developed by the MPEG307
Software Simulation Group (MSSG) [41]. To better308
understand the components of the software MPEG-2309
decoder, we first describe its algorithm and then discuss310
in detail the functions of its main modules.311

Figure 3 shows the block diagram of a typical soft-312
ware MPEG video decoder, such as [41]. Figure 4 lists313
the corresponding high-level algorithm. The decoder314
iterates on decoding a picture and sending the decoded315
pixels to the frame buffer of graphics card. Within a pic-316
ture, the decoder processes each macroblock through317
three steps: Variable Length Decoding and Inverse318
Quantization (referred to as VLD for succinctness), In-319
verse DCT (IDCT), and Motion Compensation (MC).320
Each of these processing steps along with the display321
has its own characteristics in terms of computation and322
memory bandwidth requirement.323

VLD. The VLD module parses an input stream, decodes324
macroblock headers, motion vectors, and DCT block325
coefficients. In this step, a small amount of com-326
pressed data is read from disk or network, which327
can easily fit into the L1 cache. VLD is the process328
of inverse Huffman coding, it involves table lookup,329
bit shifting operations, and branches. Because gen-330

Figure 4. Algorithm of a typical MPEG-2 video decoder.

eral purpose processors are usually not optimized for 331
these operations, VLD is mostly computation inten- 332
sive. 333

IDCT. The IDCT module restores DCT coefficients into 334
a block of pixels or prediction residuals. This step 335
needs only one block (64 short integers) of pixel data 336
along with some tables of constants [42]. The data 337
can fit into the L1 cache of a processor easily. How- 338
ever, it takes 200 to 300 cycles to compute the result 339
even with a SIMD optimized routine [43], making 340
IDCT an computation intensive procedure. 341

MC. The MC module uses motion vectors to form a pre- 342
diction of the current macroblock from previously 343
decoded pictures. It then combines the prediction 344
with the residuals from the IDCT module to pro- 345
duce the final picture. It is computation intensive for 346
three reasons. First, it needs to calculate the aver- 347
age of two or four pixels when half-pixel accuracy 348
motion vectors are used. Second, it has to average 349
two macroblocks when bi-directional predictions or 350
dual prime predictions are used. Third, it needs to 351



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

198 Chen, Li and Wei

saturate the sum of prediction and residual when it352
exceeds the representation range of a byte. Motion353
compensation is also memory intensive because it is354
essentially a series of memory copies. In a video de-355
coder, the working set size2 is at least 3 frame buffer356
size—two for reference frames and one for the cur-357
rent frame. For a modest 720p format (1280 × 720)358
stream, it equals about 4.1 MB of memory, which can359
hardly fit into the largest L2 or L3 cache of today’s360
commodity processors.3361

Display. The function of display module is to display362
a frame in YCrCb format on the monitor. This func-363
tion used to be computation intensive, when color364
space conversion was performed by the CPU [1].365
Nowadays virtually every graphics card has built-366
in capability of YCrCb-to-RGB conversion. Thus,367
display has become essentially a memory copy op-368
eration with little or no computation involved. Its369
speed is limited by the bandwidth of the memory370
bus and/or the graphics bus.371

4.2. Identifying Performance Bottlenecks372

We first apply known optimization techniques to the373
MSSG reference decoder. The reasons are two-fold.374
First, it helps us understand the benefit of multimedia375
instruction set extensions. Second, it allows us to iden-376
tify performance bottlenecks in the resulting optimized377
video decoder.378

The optimizations that we incorporate include a fast379
IDCT routine using MMX instructions, fast motion380
compensation routines using MMX/SSE instructions,381
fast bitstream processing functions using MMX in-382
structions, and 1 × 1 and 4 × 4 IDCT fast paths for383
blocks that contains only low frequency coefficients.384
We call the reference decoder V0 (Version 0), and the385
optimized decoder V1 (Version 1).386

We play all four test streams on V0, V1 and the Pow-387
erDVD player4. Table 2 shows the frame rates. Notice388

Table 2. Frame rates of V0, V1, and PowerDVD.

Stream V0 V1 PowerDVD

spr 33.5 74.9 80.3

matrix 33.0 77.6 83.1

fish 14.0 32.0 N/Aa

fox5 14.4 33.6 N/Aa

aPowerDVD 2.55 does not decode HDTV streams.

that V1 is about 2.2 times faster than V0, and only about 389
7% slower than PowerDVD. This indicates that exten- 390
sive use of MMX/SSE instructions is able to provide 391
state-of-the-art software decoding performance. The 2 392
× performance improvement also confirms the results 393
in [14]. 394

Using the profiling tools in VTune, we analyze the 395
running time of each major component in V1. Table 3 396
shows the time spent in the VLD, IDCT, MC and dis- 397
play modules for all four video clips. The table also 398
includes the calculated CPIs of core routines in IDCT, 399
MC, and display. We did not calculate the CPI of VLD, 400
due to the difficulty of hand counting its number of in- 401
structions. 402

The results show that the MC and display modules 403
dominate the running time. The average CPI of IDCT 404
is 0.57, indicating that the processor executes almost 405
two instructions per CPU cycle. In other words, the two 406
MMX pipelines are working nearly at full throughput. 407
It strongly suggests that IDCT is not memory limited. 408

The average CPI of MC is 1.81, which is signifi- 409
cantly greater than that of IDCT. This shows that there 410
are stalls in the MC module. By analyzing the code, 411
we found that the core MC functions have simple se- 412
quential structures, with branches accounting for less 413
than 2% of the total instructions. Thus branch mis- 414
predictions are unlikely to be the cause. As we have 415
described before, MC is essentially a series of mem- 416
ory copies. Therefore, it is the memory accesses in MC 417
that are stalling the CPU. It shows in two forms—cache 418
read misses or the piling up of writes. 419

The average CPI of the display module is 10.57, 420
showing that the CPU stalls severely. Because the dis- 421
play function is a sequential copy from main mem- 422
ory to graphics memory, we can preclude branch mis- 423
prediction as the cause of the high CPI number. We 424
believe the main reason is that it takes very few in- 425
structions but many CPU cycles to transfer data in the 426
write buffer to an AGP device (graphics card). When 427
the write buffer in the CPU is full, further write instruc- 428
tions have to stall until an entry in the write buffer is 429
retired. 430

The result obtained here is generally consistent with 431
that reported in [45]. We notice that the distributions of 432
CPIs exhibit the same pattern for all four video clips. In 433
the following sections, we choose to use fish as a rep- 434
resentative clip to evaluate the decoder’s performance 435
after each optimization technique is incorporated. 436

Figure 5 illustrates the time sequences of different 437
tasks in the CPU, memory bus, and AGP bus with the 438



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 199

Table 3. Running time breakdown and CPIs of V1. Time is in measured in ms. CPI is noted in parentheses.

VLD IDCT MC Display Other

spr 7,715 (n/a) 2,410 (0.56) 11,902 (1.87) 10,384 (10.44) 1,145 (n/a)

matrix 7,168 (n/a) 2,410 (0.57) 9,976 (1.81) 9,583 (10.43) 1,041 (n/a)

fish 4,276 (n/a) 1,437 (0.57) 9,045 (1.74) 8,716 (10.71) 628 (n/a)

fox5 3,672 (n/a) 1,087 (0.59) 7,970 (1.82) 8,122 (10.71) 573 (n/a)

Figure 5. System resource utilization in an MPEG-2 video decoder. This is an abstract view of the algorithm; items are not drawn to proportion.

software decoder. The time line goes from left to right439
horizontally. The bars along the CPU line indicate the440
tasks of the core functions in a software decoder and441
the width of the bars indicate the amount of time taken.442
The tasks include VLD, IDCT, RMC (reading in MC),443
WMC (computation and writing in MC), RDISP (read-444
ing in Display), and WDISP (computation and writing445
in Display). The bars along the MEM line and AGP446
line indicate the amount of time taken to read (RMEM)447
and write data (WMEM and WAGP) in the memory sub-448
system and the frame buffer across the AGP port, ini-449
tiated by the tasks along the CPU line. With this video450
decoding algorithm, the CPU has to stall frequently451
while waiting for data to be read in MC, and to be writ-452
ten in display. This illustration helps explain why the453
CPIs of MC and Display are so high.454

5. Macroblock Level Concurrency455

To remove or alleviate the performance bottleneck in456
the software MPEG-2 decoder, we propose three tech-457
niques to exploit concurrencies among the CPU, the458
memory sub-system, and the frame buffer. In each459
of the following three subsections, we first describe460
a method and then evaluate its performance improve-461
ment. We will then provide an overall evaluation of462

a software decoder with all three optimization tech- 463
niques. 464

5.1. Interleaved Block-Order of Frame Buffer 465

5.1.1. Description. Caches in a memory hierarchy 466
help to exploit 1D spatial localities that exist in many 467
applications. In MPEG-2 video decoding, and many 468
other image and video applications, the reference of 469
data exhibits a 2D spatial locality, that is, when one 470
pixel is accessed, the pixels in its neighboring columns 471
and rows are also likely to be accessed. For example, in 472
MPEG-2 video decoding, when motion compensation 473
is being performed, 16 × 16-size pixel blocks are read 474
and written at once. When a typical scanline ordered 475
internal frame buffer is used, just as in the MSSG de- 476
coder, pixels within an 8 × 8 block are scattered across 477
8 cache lines. This decreases the cache locality of the 478
decoder. 479

To improve the memory write performance for mul- 480
timedia applications, some architectures, such as Pen- 481
tium III, provides a mechanism called write-combine 482
without write-allocation [46, 47]. Successive partial 483
writes to a cache line can be buffered and collapsed 484
to form a single cache line write to the memory. This 485
saves an unnecessary read when a cache line is first 486



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

200 Chen, Li and Wei

Scanline Order Interleaved-Block Ordrer
32B 32B

Figure 6. Interleaved block-order layout.

allocated. Most processors have only a handful of these487
write-combine buffers. For instance, Pentium III has488
four. It is therefore important that these partial writes489
happen close to each other. When scanline ordered in-490
ternal buffers are used, writing a macroblock causes491
at least 32 partial writes (16 for the luma component,492
and 8 for each of the chroma components). This makes493
write-combine impossible.494

To improve the cache locality and take advantage of495
the write-combine feature, we propose a new layout for496
internal frame buffers, called interleaved block-order.497
A frame buffer is first row major ordered on an 8 ×498
8-block basis. Within each block even scanlines are499
first stored together, then followed by odd scanlines, as500
shown in Fig. 6. In this layout, all 64 bytes for a block501
are stored together, so that they can fit into one or two502
cache lines. This not only increases cache locality but503
also makes write combine possible. The interleaving504
structure also benefits field pictures and field predic-505
tions.506

5.1.2. Evaluation. We implement the interleaved507
block-order frame buffers by modifying the motion508
compensation routines and the display routine in V1.509
We call this version V2. We profile V2 playing the510
fish clip and calculate the CPIs of major components.511
Table 4 shows the comparison between V1 and V2.512

We notice that the time spent in the MC module is513
reduced from 9 seconds to 7 seconds. Because of the514

Table 4. Comparison between V1 and V2 (fish).

V1 V2

Time (ms) CPI Time (ms) CPI

VLD 4,276 – 4,117 –

IDCT 1,437 0.57 1,390 0.55

MC 9,045 1.74 6,984 1.52

Display 8,716 10.71 8,336 10.41

Other 628 – 1,161 –

Total 24,102 – 21,988 –

FPS 32.02 35.13

sequential nature of the display function, branch mis- 515
predictions should not play a major role. This leads us 516
to attribute the performance enhancement to the im- 517
proved data cache locality provided by the interleaved 518
block-order frame buffer layout. We remark that this 519
is a 23% improvement for an optimized motion com- 520
pensation module by simply reorganizing the memory 521
layout. The CPI of MC is reduced from 1.74 to 1.52. 522
This means that the CPU stalling is reduced due to bet- 523
ter cache locality and less memory traffic by enabling 524
write-combine. The display time decreases from 8.7 to 525
8.3 seconds. This is likely due to better cache locality. 526
With a CPI of 10.41, display is still severely memory 527
bound. 528

5.2. Explicit Prefetching of Macroblocks 529

5.2.1. Description. As we have argued in Section 4.1, 530
the working set size of a software video decoder is at 531
least 3 frame buffer size. For a 720p format stream, 532
it equals over 4 MB of memory, which can hardly fit 533
into even the largest L2 cache, let alone the L1 cache. 534
The sequential decoding of macroblocks translates to 535
compulsory and/or capacity cache miss [48] for almost 536
every macroblock. 537

Software controlled cache prefetching method [33, 538
34] was proposed to alleviate this problem. A compiler 539
first instruments the decoder and then inserts prefetch 540
instructions according to the profiling results. Because 541
the source address of reference macroblock is data de- 542
pendent, the automatically inserted prefetch instruc- 543
tions are speculative at best. When too few prefetches 544
are used, cache misses can still occur; but when too 545
many prefetches are used, memory traffic can be un- 546
duly increased, thus exacerbating the problem. 547

An ideal software prefetching mechanism should 548
avoid these problems by reducing or eliminating cache 549
misses without creating extra memory traffics. Fortu- 550
nately, this is possible for MPEG-2 video decoding. We 551
notice that motion vectors are coded in the macroblock 552
header. Therefore, a decoder knows the source ad- 553
dresses of reference blocks before decoding the blocks 554
and IDCT. As we have shown before, VLD and IDCT 555
are not memory intensive; this provides a perfect oppor- 556
tunity to prefetch reference macroblocks during these 557
steps. By doing so, the decoder can distribute memory 558
accesses among all three processing steps, hiding the 559
memory read latency. 560

Figure 7 shows the modified decoding algorithm 561
with prefetching. In this algorithm, we set up the source 562



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 201

Figure 7. Decoding algorithm with prefetching. Changes are shown
in italics.

addresses of reference blocks right after motion vectors563
are decoded. Prefetch instructions are then inserted be-564
tween the decoding and IDCT of each block. These565
prefetches bring the reference blocks to cache.566

Figure 8 illustrates how the algorithm works. Com-567
paring with Fig. 5, we notice that the memory reads are568
moved from the motion compensation phase to decod-569
ing. This has the effect of reducing or eliminating stalls570
in motion compensation, while utilizing the otherwise571
idling memory resource in the decoding stage.572

We remark that an additional benefit of the inter-573
leaved block-order is that it reduces the number of574

Figure 8. Improved system resource utilization with explicit prefetching. This is an abstract view of the algorithm; items are not drawn to
proportion.

Table 5. Comparison between V2 and V3 (fish).

V2 V3

Time (ms) CPI Time (ms) CPI

VLD 4,117 – 4,705 –

IDCT 1,390 0.55 1,509 0.59

MC 6,984 1.52 3,922 0.65

Display 8,336 10.41 8,350 10.42

Other 1,161 – 835 –

Total 21,988 – 19,321 –

FPS 35.13 39.96

prefetch instructions, because the pixels of a block are 575
stored together. In most processors, such as the Pentium 576
III, a cache line consists of 32 bytes. Thus a block can 577
be completely prefetched with two instructions. 578

5.2.2. Evaluation. To implement the explicit 579
prefetching, we move the reference block address 580
calculation from the motion compensation module 581
to the VLD module. They are placed after the mac- 582
roblock header decoding code. We then manually 583
insert prefetch instructions, and intersperse them with 584
block decoding functions. We call this decoder V3. 585
The running time breakdown and CPI’s of V3, as 586
compared to V2, are shown in Table 5. 587

The total time in MC is reduced from 6.984 seconds 588
to 3.922 seconds. The accurate, explicit macroblock 589
prefetching has effectively removed the memory bot- 590
tleneck in motion compensation. As a result, the CPI of 591
MC is now reduced from 1.52 to 0.65. This indicates a 592
much improved utilization of the MMX/SSE units. 593



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

202 Chen, Li and Wei

Prefetching does introduce some overheads. The594
time spent in the VLD module increases from595
4.117 seconds to 4.705 seconds and that in the IDCT596
module increases from 1.39 seconds to 1.509 seconds.597
However, these overheads are much less than the sav-598
ing of 3.061 seconds in the MC module. As a result,599
the overall speed of playing the fish video clip is in-600
creased from 35 frames per second to 40 frames per601
second.602

5.3. Interleaved Output and Decode603

5.3.1. Description. Although the previous two opti-604
mizations can remove the memory performance bot-605
tleneck in the motion compensation module, they are606
not able to do much for the display phase in the de-607
coder. From the running time measurement of V3, we608
find that the average observed bandwidth for copying609
pixels is only about: 772 × 1280 × 720 × 2/8.350 =610
170.4 MB/s. This is far short of the available bandwidth611
on an AGP 4X port. It takes about 8350/772 = 10.8 ms612
to copy a 1280 × 720 frame in packed YUYV format.613
In order to achieve real time decoding of 720p at 60 fps,614
a decoder has only about 16 ms to decode and display615
a frame. Clearly the display is still a bottleneck.616

From Fig. 8 we notice that the graphics bus idles617
during the decoding phase. It is only used during the618
display phase, where an entire picture is written to the619
frame buffer. The 10.42 CPI indicates that the CPU620
stalls frequently to wait for data to be sent across the621
graphics bus.622

To exploit the concurrency between the CPU and623
the frame buffer across the AGP port, we propose an624

200

400

600

800

1000

1200

1400

1600

1800

10 10 10 10 102 3 4 5 6

Transfer Block Size (Byte)

E
ffe

ct
iv

e 
T

hr
ou

gh
pu

t (
M

B
/s

)

0

Figure 9. Effective AGP write bandwidth as a function of write granularity.

algorithm to interleave decoding and displaying at mac- 625
roblock level. Instead of copying the entire picture after 626
it is decoded, we break the copying process into small 627
units. To find out the appropriate granularity, we per- 628
form the following simple experiment. 629

We write a program that allocates a DirectDraw sur- 630
face on the graphics card and writes bytes to the buffer, 631
just as an MPEG-2 video decoder does. The program 632
iterates n times on a loop. Within the loop, it first per- 633
forms some simulated computation that does not refer- 634
ence any memory locations. It then optionally writes B 635
bytes to consecutive addresses on the display surface. 636

The program is run in two modes. In the first mode, 637
the optional writes to the frame buffer are disabled, 638
and we measure the total running time as tc, that is, 639
time for computation alone. In the second mode, the 640
optional writes are enabled, and the total running time 641
T is again measured. The difference in the two running 642
times is caused by the writes. We can then calculate the 643
effective write bandwidth: 644

EBW = (n/B)/(T − tc)

We vary B from 128 bytes to 256 KBs in powers 645
of 2. The observed effective write bandwidth across 646
the AGP port versus the write granularity is plotted in 647
Fig. 9. From the plot, we observe that when B is large, 648
the curve is flat. Here we essentially see the sustained 649
throughput of the write operation, which is mostly lim- 650
ited by the on-board graphics memory speed. How- 651
ever, as B decreases, the effective bandwidth increases 652
dramatically. In the finest granularity, it even exceeds 653
the theoretical limit of 1.066 GB/s in the AGP 4X 654



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 203

Figure 10. Decoding algorithm with interleaved output and decode.
Changes are shown in italics.

specification. The reason is that the algorithm has suc-655
cessfully exploited the concurrency between CPU and656
the AGP port. It hides the bus transactions in the com-657
putation. In effect, it sees the CPU write buffer speed658
instead of the AGP speed.659

In the test, we conclude that the smaller the write660
granularity, the higher the write bandwidth, and thus661
the higher the overall frame rate. In a real MPEG-2662
video decoder, using too small a granularity will in-663
evitably introduce overheads which eventually negate664
the performance gain. We decide to use macroblock665

Figure 11. Optimized system resource utilization with prefetching and interleaved output. This is an abstract view of the algorithm; items are
not drawn to proportion.

as the granularity. It is small enough to gain from this 666
effect. On the other hand, it is also large enough so 667
that it requires very little algorithmic change, because 668
a picture is naturally decoded one macroblock at a time. 669

We use a pointer output-frame to indicate which 670
frame4 to be output during the decoding. It is either the 671
current frame for a B-picture or the previous reference 672
frame for an I- or P-picture. After the motion compen- 673
sation of a macroblock in the current frame, one mac- 674
roblock from the output-frame will be copied to the 675
graphics card. The latency of graphics bus is hidden in 676
the decoding of the next macroblock. To further reduce 677
the time spent in reading a macroblock, we prefetch the 678
output macroblock before the motion compensation. 679

Figure 10 shows the modified decoding algorithm 680
with interleaved output and decode. Figure 11 illus- 681
trates how the algorithm alleviates the performance bot- 682
tleneck. When display is the only purpose of decoding 683
a stream, we further reduce the memory requirement 684
by not storing B pictures in memory. This option can 685
be easily integrated with interleaved output. 686

5.3.2. Evaluation. We implement a display routine 687
that outputs one macroblock at a time, and interleave 688
the output with decoding. We call this new version V4. 689
Table 6 shows the running time break down and CPI’s 690
of V4, as compared to the previous version V3. 691

The result shows that the bottleneck at the dis- 692
play phase has been completely removed. The display 693
time is reduced from 8.35 seconds to 0.882 seconds, 694
a speedup by about a factor of 10. The CPI is re- 695
duced from 10.42 to 1.07. Again, this shows that the 696
MMX/SSE units are working at full throttle. The effec- 697
tive write bandwidth is 772 × 1280 × 720 × 2/0.882 698
= 1.613 GB/s, well exceeding the AGP 4X port limit. 699



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

204 Chen, Li and Wei

Table 6. Comparison between V3 and V4 (fish).

V3 V4

Time (ms) CPI Time (ms) CPI

VLD 4,705 – 5,059 –

IDCT 1,509 0.59 1,454 0.57

MC 3,922 0.65 4,216 0.70

Display 8,350 10.42 882 1.07

Other 835 – 830 –

Total 19,321 – 12,441 –

FPS 39.96 62.09

As a result of these combined efforts to remove mem-700
ory access bottlenecks, the new decoder now plays the701
fish video stream at 62 frames a second.702

Because we move the writes across AGP bus to the703
decoding phase, and prefetch the output macroblock704
before motion compensation, the performances of these705
two components do suffer slightly. This is indicated by706
the increase in running times of VLD and MC.707

5.4. Overall Comparisons708

To see the overall effects of all three optimizations, we709
run all four test streams with V0, V1 and V4. Table 7710
shows the frame rates of all three versions. The results711
show that the combined three optimizations can speed712
V1 (optimized with extensive use of MMX/SSE in-713
structions in the core functions) up by a factor of 1.7 to714
2.0. The overall speedup over the original MSSG de-715
coder is about 4.0 to 4.7. The resulting software MPEG-716
2 decoder can now play HDTV video streams on a PC717
with 933 MHz Pentium III CPU at real-time frame718
rates.719

We also notice that our optimizations improve higher720
resolution HDTV videos better. This is because the721
larger memory footprint of decoding them more ad-722
versely impacts the original decoding algorithm. Thus723

Table 7. Performance comparison of V0, V1 and V4.

V0 V1 V4 Speedup Speedup
Stream (fps) (fps) (fps) V4 vs. V0 V4 vs. V1

spr 33.48 74.92 132.72 3.96 1.77

matrix 33.03 77.64 133.97 4.06 1.73

fish 14.06 32.02 62.09 4.42 1.94

fox5 14.38 33.61 67.57 4.70 2.01

there is more to gain when the memory bottleneck is 724
lifted. 725

6. Conclusion 726

This paper reports our study on memory performance 727
optimizations for a software MPEG-2 decoder. By ana- 728
lyzing the distributions of cycles-per-instruction (CPI) 729
in the core functions of an optimized software MPEG-2 730
decoder, we found that its performance bottleneck on 731
today’s computers is now at memory operations. The 732
CPI of motion compensation module is 1.81 while the 733
CPI of display is 10.57. 734

Based on the principle of concurrency, we have 735
proposed and evaluated three optimization techniques 736
to remove the performance bottleneck, including an 737
interleaved block-order data layout to improve the 738
data cache locality, an algorithm to explicitly prefetch 739
macroblocks, and an algorithm to schedule inter- 740
leaved macroblock decoding and output. Our evalu- 741
ation shows that each optimization improves certain 742
aspect of the memory performance and that combin- 743
ing all three optimizations can remove the memory 744
performance bottlenecks in a software MPEG-2 de- 745
coder almost completely. The resulting software de- 746
coder can decode and display 1280 × 720-resolution 747
HDTV streams at over 62 frames per second on a 933 748
MHz Pentium III PC without special hardware support. 749

We have noticed that using multimedia instructions 750
extensively alone can speed up the original MSSG soft- 751
ware decoder by a factor of about two, whereas the 752
memory performance optimizations presented in this 753
paper can further improve its performance by another 754
factor of about two. 755

We did not test the decoder with 1080i format HDTV 756
streams, because the graphics card does not support 757
overlay surfaces as large as 1920 × 1080 . However, 758
the decoder itself is not limited by the resolution. We 759
plan to find means to evaluate our algorithm for higher 760
resolution streams. 761

We implemented and evaluated the proposed meth- 762
ods only on a Pentium III platform, but except the spe- 763
cific prefetching instructions used, our methods are not 764
tied to a particular architecture. We expect the tech- 765
niques described in this paper to apply to other modern 766
architectures. 767

Finally, we remark that, as with many other cache 768
and memory related research, the design choices made 769
here are heavily dependent on the characteristics of the 770
underlying architecture, for example, the size of the L1 771



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 205

and L2 cache, the relative clock speeds of the proces-772
sor and memory, the implementation of the write buffer,773
to name just a few. Architectural changes in new mi-774
croprocessors would invalidate some of the techniques775
proposed, and thus provide new research opportunities.776
As this study was conducted, new Pentium 4 was intro-777
duced. It extends the Pentium III architecture by pro-778
viding automatic hardware prefetching. It also supports779
hardware multithreading on a single processor. These780
would mostly like affect multimedia applications. We781
intend to conduct further research in this area.782

Acknowledgments783

This project is supported in part by Department of En-784
ergy under grant ANI-9906704 and grant DE-FC02-785
99ER25387, by Intel Research Council and Intel Tech-786
nology 2000 equipment grant, and by National Sci-787
ence Foundation under grant CDA-9624099 and grant788
EIA-9975011. Han Chen is supported in part by a Wu789
Fellowship.790

Notes791

1. The latest version of VTune 7.0 can report CPI information. This792
simplifies the calculation, but does not affect the results we present793
here.

2. The original definition of working set is due to Denning [44]; here794
we use its informal meaning.

3. Intel Pentium 3: 256/512 KB L2. Intel Pentium 4: 512 KB/1 MB795
L2. Intel Xeon: 512 KB L2. AMD Athlon XP: 256/512 KB L2.796
AMD Opteron: 1 MB L2. Apple PowerPC G4: 256 KB L2, 1/2797
MB L3. Apple PowerPC G5: 512 KB L2

4. A frame in a progressive sequence or the combined even and odd798
fields in an interlaced sequence.

References799

1. K. Patel, B.C. Smith, and L.A. Rowe, “Performance of a800
Software MPEG Video Decoder,” in Proceedings of the 1st801
ACM International Conference On Multimedia, 1993, pp. 75–802
82.803

2. M. Ikekawa, D. Ishii, E. Murata, K. Numata, Y. Takamizawa, and804
M. Tanaka, “A Real-time Software MPEG- 2 Decoder For Mul-805
timedia PCs,” in International Conference on Consumer Elec-806
tronics, Digest of Technical Papers, 1997, pp. 2–3.807

3. R.B. Lee, “Realtime MPEG Video via Software Decompression808
on a PA-RISC Processor,” Compcon ’95. “Technologies for the809
Information Superhighway,” 1995, pp. 186–192.810

4. Y. Tung, C. Ho, and J. Wu, “MMX-based DCT and MC Algo-811
rithms for Real-Time Pure Software MPEG Decoding,” in IEEE812
Intl. Conf. on Multimedia Computing and Systems, vol. 1, 1999,813
pp. 357–362.814

5. C. Zhou et al., “MPEG Video Decoding with the UltraSPARC 815
Visual Instruction Set,” Compcon ’95. “Technologies for the 816
Information Superhighway”, 1995, pp. 470–477. 817

6. D.A. Patterson and J.L. Hennessy, Computer Organization and 818
Design, 2nd edn. Morgan Kaufmann Publishers, 1998. 819

7. A. Peleg, S. Wilkie, and U. Weiser, “Intel MMX for Multimedia 820
PCs,” Communications of the ACM, vol. 40, no. 1, 1997, pp. 821
25–38. 822

8. D. LeGall, “MPEG: A Video Compression Standard for Multi- 823
media Applications,” Communications of the ACM, vol. 34, no. 824
4, 1991, pp. 46–58. 825

9. ISO/IEC 13818-2:2000. Information Technology—Generic 826
Coding of Moving Pictures and Associated Audio Information: 827
Video, 2nd edn. 2000. 828

10. ISO/IEC 14496-2:2001. Coding of Audio-Visual Objects—Part 829
2: Visual, 2nd edn. 2001. 830

11. M. Liou, “Overview of the p×64 kbit/s Video Coding Standard,” 831
Communications of the ACM, vol. 34, no. 4, 1991, pp. 59–63. 832

12. ITU-T. Recommendation H.263: Video Coding for Low Bitrate 833
Communication. ITU, 1995. 834

13. ITU-T. Recommendation H.264: Advanced Video Coding for 835
Generic Audiovisual Services. ITU, 2003. 836

14. P. Ranganathan, S. Adve, and N.P. Jouppi, “Performance of Im- 837
age and Video Processing with General- Purpose Processors and 838
Media ISA Extensions,” in Proc. International Symposium on 839
Computer Architecture, 1999, pp. 124–135. 840

15. W. Abu-Sufah, D.J. Kuck, and D.H. Lawrie, “Automatic Pro- 841
gram Transformations for Virtual Memory Computers,” in Pro- 842
ceedings of the National Computer Conference, June 1979, pp. 843
969–974. 844

16. J.L. Elshoff, “Some Programming Techniques for Pro- 845
cessing Multi-Dimensional Matrices in a Paging Environ- 846
ment,” in Proceedings of the National Computer Conference, 847
1974. 848

17. S. Coleman and K.S. McKinley, “Tile Size Selection Using 849
Cache Organization and Data Layout,” in Proceedings of the 850
Conference on Programming Language Design and Implemen- 851
tation, 1995, pp. 279–290. 852

18. D. Gannon, W. Jalby, and K. Gallivan, “Strategies for Cache 853
and Local Memory Management by Global Program Transfor- 854
mation,” Journal of Parallel and Distributed Computing, vol. 5, 855
1988, pp. 587–616. 856

19. M.D. Lam, E.E. Rothberg, and M.E. Wolf, “The Cache Perfor- 857
mance and Optimizations of Blocked Algorithms,” in Proceed- 858
ings of the Fourth International Conference on Architectural 859
Support for Programming Languages and Operating Systems, 860
1991, pp. 63–74. 861

20. J. Philbin, J. Edler, O.J. Anshus, C.C. Douglas, and K. Li, 862
“Thread Scheduling For Cache Locality,” in Proceedings of the 863
Seventh International Conference on Architectural Support for 864
Programming Languages and Operating Systems, 1996, pp. 60– 865
71. 866

21. N.P. Jouppi, “Improving Direct-Mapped Cache Performance 867
by the Addition of a Small Fully-Associative Cache Prefetch 868
Buffers,” in Proceedings of the 17th Annual Symposium on Com- 869
puter Architecture, 1990, pp. 364–375. 870

22. A.J. Smith, “Cache Memories,” ACM Computing Surveys, vol. 871
14, no. 3, 1982, pp. 473–530. 872

23. J.-L. Baer and T.-F. Chen, “An Effective On-chip Preload- 873
ing Scheme to Reduce Data Access Penalty,” in Proceedings 874



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

206 Chen, Li and Wei

of the 1991 Conference on Supercomputing, 1991, pp. 176–875
186.876

24. T.-F. Chen and J.-L. Baer, “A Performance Study of Software877
and Hardware Data Prefetching Schemes,” in Proceedings of878
the 21st Annual International Symposium on Computer Archi-879
tecture, 1994, pp. 223–232.880

25. A.C. Klaiber and H.M. Levy, “An Architecture for Software-881
Controlled Data Prefetching,” in Proceedings of the 18th Annual882
International Symposium on Computer Architecture, 1991, pp.883
43–53.884

26. D. Callahan, K. Kennedy, and A. Porterfield, “Software Prefetch-885
ing,” in Proceedings of the Fourth International Conference on886
Architectural Support for Programming Languages and Oper-887
ating Systems, 1991, pp. 40–52.888

27. T.C. Mowry, “Tolerating Latency in Multiprocessors Through889
Compiler-inserted Prefetching,” ACM Transactions on Com-890
puter System, vol. 16, no. 1, 1998, pp. 55–92.891

28. T.C. Mowry, M.S. Lam, and A. Gupta, “Design and Evaluation892
of a Compiler Algorithm for Prefetching,” in Proceedings of the893
Fifth International Conference on Architectural Support for Pro-894
gramming Languages and Operating Systems, 1992, pp. 62–73.895

29. P. Ranganathan, V.S. Pai, H. Abdel-Shafi, and S.V. Adve,896
“The Interaction of Software Prefetching with ILP Processors897
in Shared-Memory Systems,” in Proceedings of the 24th898
International Symposium on Computer Architecture, 1997, pp.899
144–156.900

30. P. Soderquist and M. Leeser, “Optimizing the Data Cache901
Performance of a Software MPEG-2 Video Decoder,” in Proc.902
International Conference on Multimedia, 1997, 291–301.903

31. D.F. Zucker, M.J. Flynn, and R.B. Lee, “A Comparison of904
Hardware Prefetching Techniques for Multimedia Bench-905
marks,” in Proc. of the Third IEEE International Conference906
on Multimedia Computing and Systems, 1996, pp. 236–244.907

32. D.F. Zucker, M.J. Flynn, and R.B. Lee, “Improving Performance908
for Software MPEG Players,” Compcon ’96. Technologies for909
the Information Superhighway, 1996, pp. 327–332.910

33. D.F. Zucker, R.B. Lee, and M.J. Flynn, “An Automated Method911
for Software Controlled Cache Prefetching,” in Proceedings912
of the Thirty-First Hawaii International Conference on System913
Sciences, vol. 7, 1998, pp. 106–114.914

34. D.F. Zucker, R.B. Lee, and M.J. Flynn, “Hardware and Soft-915
ware Cache Prefetching Techniques for MPEG Benchmarks,”916
in IEEE Transactions on Circuits and Systems for Video917
Technology, vol. 10, no. 5, 2000, pp. 782–796.918

35. R. Cucchiara, M. Piccardi, and A. Prati, “Exploiting Cache in919
Multimedia,” in IEEE International Conference on Multimedia920
Computing and System, vol. 1, 1999, pp. 345–350.921

36. R. Cucchiara, M. Piccardi, and A. Prati, “Hardware Prefetching922
Techniques for Cache Memories in Multimedia Applications,”923
in Proceedings of the 5th IEEE International Workshop on Com-924
puter Architectures for Machine Perception, 2000, pp. 311–319.925

37. Y.-K. Chen, E. Debes, R. Lienhart, M. Holliman, and M. Yeung,926
“Evaluating and Improving Performance of Multimedia Appli-927
cations on Simultaneous Multi-Threading,” in Proceedings of928
International Conference on Parallel and Distributed Systems,929
2002.930

38. L. Peng, J. Song, S. Ge, and Y.-K.Chen, “Case Studies: Memory931
Behavior of Multithreaded Multimedia and AI Applications,” in932
Proceedings of Workshop on Computer Architecture Evaluation933
using Commercial Workloads, 2004, pp. 33–40.934

39. Microsoft Corp. Visual C++ 6.0 with Service Pack 5. 935
http://msdn.microsoft.com/visualc/ 936

40. Intel Corp. VTune Performance Analyzer,” http://developer. 937
intel.com/software/products/vtune/ 938

41. S. Eckart and C.E. Fogg, “ISO/IEC MPEG-2 Software Video 939
Codec,” in Proc. Digital Video Compression: Algorithms and 940
Technologies 1995, SPIE, 1995, pp. 100–109. 941

42. Y. Arai, T. Agui, and M. Nakajima, “A Fast DCT-SQ Scheme 942
for Images,” in Transactions of the IEICE, no. 11, November 943
1988, pp. 1095–1097. 944

43. Intel Corp, “Application Note AP-529: Using MMX In- 945
structions to Implement Optimized Motion Compensation for 946
MPEG1 Video Playback,” Archived at http://www.cae.wisc.edu/ 947
∼ece734/mmx/AP-529.html. 948

44. P. Denning, “Virtual Memory,” Computing Surveys, vol. 2, no. 949
3, 1970, pp. 169. 950

45. M.J. Holliman, E.Q. Li, and Y.-K. Chen, “MPEG Decoding 951
Workload Characterization,” in Proceedings of Workshop 952
on Computer Architecture Evaluation using Commercial 953
Workloads, Feb. 2003, pp. 23–34. 954

46. Intel Corp, “Intel Architecture Optimization Reference Manual,” 955
http://www.intel.com/design/pentiumii/ manuals/245127.htm 956

47. Intel Corp. Intel Architecture Software Developer’s Manual 957
Volume 3: System Programming, Chapter 9, Memory Cache 958
Control,” http://developer.intel.com/design/pentiumii/manuals/ 959
243192.htm 960

48. M.D. Hill, “Aspects of Cache Memory and Instruction Buffer 961
Performance,” PhD thesis, Computer Science Division, 962
University of California at Berkeley, 1987.

963

964
Han Chen is a research staff member in IBM T.J. Watson Research 965
Center. His research interests include distributed computing systems, 966
scalable display system, and multimedia. He received his Ph.D. de- 967
gree in 2003 and his M.A. degree in 1999 from Princeton University. 968
He received his B.S. degree from Tsinghua University of Beijing, 969
China in 1997. 970
chenhan@us.ibm.com 971

972
Kai Li is a Charles Fitzmorris professor at the Computer Science 973
Department of Princeton University. His research interests include 974



P1: NVI

Journal of VLSI Signal Processing SJNW230-07-5386650 May 3, 2005 10:12

Memory Performance Optimizations for Real-Time Software HDTV Decoding 207

operating systems, computer architecture, distributed systems, and975
scalable display systems. He received his Ph.D. degree from Yale976
University in 1986. Prior to that, he received his M.S. degree from977
University of Science and Technology of China, Academy of Sci-978
ences of China in 1981 and a B.S. degree from Jilin University in979
China in 1977. He was a visiting faculty member at University of980
Toronto in 1988 and a visiting professor at Stanford University dur-981
ing his sabbaticals in 1996 and 2000. He has served on dozens of982
program committees and served as chair or vice chair several times.983
He has been elected as an ACM fellow in 1998.984
li@cs.princeton.edu985

Bin Wei received a Ph.D. in Computer Science from Princeton Uni-986
versity in 1998 and joined the research community at AT&T Shannon

Laboratories since then. His research interests are in the areas of high- 987
performance computer systems, multimedia, and service platforms 988
for mobile users. He received a BS in Computer Science from Tianjin 989
University, China in 1983 and an MS in Computer Science from the 990
Institute of Computing Technology, Chinese Academy of Sciences, 991
in 1989. 992
bw@research.att.com 993


