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Abstract

We present a practical vision-based calibration system for
large format multi-projector displays. A spanning tree
of homographies, automatically constructed from several
camera images, accurately registers arbitrarily-mounted
projectors to a global reference frame. Experiments on
the 18’�8’ Princeton Display Wall (a 24 projector array
with 6000�3000 resolution) demonstrate that our algorithm
achieves sub-pixel accuracy even on large display surfaces.
A direct comparison with the previous best algorithm shows
that our technique is significantly more accurate, requires
far fewer camera images, and runs faster by an order of
magnitude.

1. Introduction
Large format high-resolution display devices are becoming
increasingly important for scientific visualization, industrial
design and entertainment applications. A popular approach
to building such displays is the projector array, where sev-
eral commercially-available projectors are tiled to create a
seamless, high-resolution display surface.

The projectors in the array require precise geometric cal-
ibration to prevent artifacts in the final display. This is typi-
cally done by manually aligning the projectors so that their
projection areas tile the desired space, and then pre-warping
the projected image to eliminate keystoning and disconti-
nuities. Unfortunately, this process is labor-intensive and
time-consuming; furthermore, the display wall requires fre-
quent recalibration since the projectors shift slightly due to
vibration and thermal flexing in the mounts. Given the in-
creasing demand for large format display walls, calibration
solutions must scale well to multi-projector arrays of arbi-
trary size.

Several ideas for camera-based automation of projector
array alignment have recently been proposed. Surati [6]
builds lookup tables that map pixels from each projector to
points on the display surface; this is done by physically at-

taching a calibration grid (printed by a high-precision plot-
ter) onto the surface. While this approach is adequate for
a 2�2 array of projectors, it scales poorly for larger dis-
plays since creating and accurately mounting an absolute
measurement grid onto the display surface is infeasible.
Raskar et al. [4] employ two calibrated cameras in con-
junction with projected patterns to recover a 3-D model of
a (possibly non-planar) projection surface. However, this
method requires that the entire display surface be small
enough to be completely visible in the cameras’ field of
view. As display walls become larger, capturing a single
camera image of the entire display surface becomes increas-
ingly impractical. This motivates approaches that can inte-
grate information about the projector geometry from a set
of camera images, each of which observe a small portion of
the display surface. Chen et al. [2] use a pan-tilt camera to
observe the individual overlap regions in the projector ar-
ray. Information about local discontinuities (point-matches
and line matches across the seam) is acquired using an it-
erative process, and a large global optimization problem is
constructed using this data. Simulated annealing is used
to find a set of pre-warps that minimizes discontinuity er-
rors. The primary advantage of their algorithm (referred
to as SA-Align in the remainder of this paper) is that, in
principle, it scales well to large display walls since the un-
calibrated camera can easily scan the overlap regions. In
practice, SA-Align is very slow and often fails to converge
to the correct solution unless the initial (manual) alignment
between projectors is good.

This paper presents a scalable approach to display wall
calibration that is both more accurate and faster than exist-
ing approaches. It is motivated by the single-projector key-
stone correction system described in [5], adapted to employ
images taken from multiple, uncalibrated cameras. Our sys-
tem efficiently scales to projector arrays of arbitrary size
without sacrificing local or global alignment accuracy. The
experiments described in this paper were performed on the
Princeton Scalable Display Wall [3], an 18’�8’ 24 projec-



Figure 1: The Princeton Scalable Display Wall is an 18’�8’
display (the largest in academia), with an effective resolu-
tion of 6000�3000 pixels. This photograph was taken from
behind the rear-projection screen and shows the array of 24
Compaq MP-1800 projectors.

tor display with an effective resolution of 6000�3000 pixels
(see Figure 1).

2. Display Wall Calibration
We assume that: the positions, orientations and optical pa-
rameters of the cameras and projectors are unknown; cam-
era and projector optics can be modeled by perspective
transforms; the projection surface is flat. Therefore, the var-
ious transforms between cameras, screen and projectors can
all be modeled as 2-D planar homographies:
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where (x; y) and (X;Y ) are corresponding points in two
frames of reference, and ~h = (h1 : : : h9)

T (constrained
by j~hj = 1) are the parameters specifying the homography.
These parameters can be determined from as few as four
point correspondences, using the closed-form solution de-
scribed in [5].

Our system employs the above technique to compute two
types of homographies: camera-to-camera and projector-to-
camera. Each is described in greater detail below, and illus-
trated in Figure 2.

First, camera-to-camera homographies capture the re-
lationship between different camera views of the display
surface. Although each view typically observes only four
or fewer projectors, the system combines these views to
generate a reference frame for the entire display surface.
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Figure 2: This diagram shows the relationship between the
various homographies described in the text. Our system’s
goal is to recover the homography (RPk) mapping each pro-
jector k, to the global reference frame. Although RPk cannot
directly be observed, it can be derived by composing jPk,
the homography between that projector and some camera,
and the chain of homographies connecting that camera to
the root node of the homography tree. The geometric distor-
tion for images projected by k’s can then be corrected using
a pre-warp of RP�1k .

Conceptually, this is equivalent to automatically building
a panoramic mosaic from a set of photographs. One can-
not directly compute a homography between two camera
views that do not overlap since they share no point corre-
spondences. Therefore, our system builds a tree of homog-
raphy relationships between adjacent views that spans the
complete set of cameras1; the mapping from any given cam-
era to the panoramic reference frame is determined by com-
pounding the homographies along the path to the reference
view at the root of the tree:

RHj = RH1 � 1Ci � � � � � iCj ;

where RHj is the homography mapping points from cam-
era j to the global reference frame, sCt are homographies
connecting adjacent camera views and RH1 maps the root
camera view to the global reference frame.2

Second, the projector-to-camera homographies trans-
form each projector’s area of projection into some camera’s
coordinate system. These homographies are determined as
follows. A white rectangle is displayed by projector k; this
appears as some quadrilateral on the display surface (due
to keystoning), and as some (other) quadrilateral in some
camera view j. The corners of the projected rectangle are

1The homography tree is refined in a second pass as described in [1].
2The transform RH1 ensures that the global frame axes are aligned

with the display surface rather than the root camera;RH1 is computed by
observing a reference rectangle on the display wall from any camera.



known in the projector frame of reference and the corre-
sponding corners of the quadrilateral are determined (to
sub-pixel accuracy) in the camera image. This gives us the
projector-to-camera homography jPk. Since we know the
mapping between any camera j and the reference frame,
this enables us to compute RPk, the transform from projec-
tor k to the reference frame: RPk = RHj � jPk. Note
that RPk captures the geometric distortion induced by the
projector’s off-center placement. This distortion can be re-
moved by pre-warping each projector k’s output by RP

�1

k .
Results are shown in Figure 3 and discussed below.

3. Results
This section presents evaluations of our algorithm on three
important metrics: local alignment error, global alignment
error and running time. Results were obtained for a variety
of multi-projector arrays under three experimental condi-
tions: (1) uncalibrated projector array; (2) array calibrated
using the previous best solution, SA-Align [2]; (3) array
calibrated using our algorithm. All experiments were per-
formed on the same hardware setup: the 24-projector dis-
play wall at Princeton University [3]. Three multi-projector
array configurations were used in our experiments: 2�2,
3�3, and 6�4 (complete wall). The experiments are de-
tailed below.

3.1. Local alignment error
To appear seamless, a display wall should minimize align-
ment error between adjacent projectors. Qualitatively,
misalignment creates artifacts such as discontinuities and
double-images in the overlap region (see Figure 3, top row).
Quantitatively, the error can be characterized by the maxi-
mum displacement between a point shown on one projec-
tor and the same point displayed by an adjacent projector.
Since the SA-Align algorithm explicitly observes point- and
line-mismatches in the overlap regions and optimizes over
warp parameters to minimize the total error, one would ex-
pect it to do well on this measure. Our technique aims
to independently register each projector to the (panoramic)
reference frame as accurately as possible, only incidentally
minimizing local errors. Nevertheless, as can be seen from
Table 1, our algorithm achieves sub-pixel registration accu-
racy, even on large display walls — demonstrating conclu-
sive improvements over SA-Align under all configurations.

3.2. Global alignment error
Global alignment error measures the displacement between
pixels in the projected image and their desired locations, as
measured in the reference frame. Note that a projector array
with excellent local alignment may still exhibit large global
alignment errors for two reasons: (1) the projected image

Table 1: Average local errors: horizontal & vertical (pixels).

Proj. Uncalibrated SA-Align Our system
array X-err Y-err X-err Y-err X-err Y-err
2�2 153.8 150.3 6.5 6.8 0.4 1.0
3�3 108.3 140.9 10.7 9.1 0.6 0.6
6�4 60.2 74.1 18.9 18.3 0.4 0.5

Table 2: Average global errors: horizontal & vertical (pixels).

Proj. Uncalibrated SA-Align Our system
array X-err Y-err X-err Y-err X-err Y-err
2�2 102.8 70.5 6.7 1.9 1.4 0.5
3�3 177.5 161.6 9.0 16.5 2.2 1.0
6�4 44.5 62.8 30.3 16.8 2.7 0.8

may be globally warped so that its edges are not parallel
with the sides of the display surface; (2) small errors in local
alignment can accumulate as homographies are chained, re-
sulting in non-linear distortions in the projected image (see
Figure 3, bottom row).

To evaluate global alignment error, we projected a coarse
grid on the display wall, and used the grid intersections as
features. We manually measured the distance from each
feature to two reference points on the display surface to de-
termine each feature’s absolute location. The global align-
ment error is computed as the average displacement be-
tween a feature’s desired and actual locations. As shown
in Table 2, our method has a substantially smaller global
alignment error than the previous methods.

3.3. Running time

To be of practical value, a calibration algorithm must be fast
as well as accurate. There are two components to running
time: the time taken to acquire images, and the time re-
quired for computation. Table 3 compares the running time
for our algorithm with SA-Align on identical hardware. Im-
ages were automatically acquired using a 640�480 pan-
tilt camera and computation performed on a Pentium-III
866 MHz machine. SA-Align was configured to use 6 point
and 6 line features per seam, and 50,000 iterations of sim-
ulated annealing (as described in [2]). Our system acquired
camera images for each 2�2 sub-array of adjacent projec-
tors and the algorithm was implemented in unoptimized
Matlab code; our algorithm is faster than SA-Align by an
order of magnitude.

For completeness, we ran SA-Align using a variety of it-
eration parameter settings on the 6�4 configuration. More
iterations achieved slightly better solutions at the expense
of running time. However, even after 500,000 iterations
(912 minutes of computation time!), SA-Align’s accuracy
(X-err=9.7, Y-err=8.5) remains substantially inferior.



Figure 3: Local and global alignment errors on the Princeton 6�4 projector display wall under three conditions: uncali-
brated (left); SA-Align [2] calibration (middle); and our technique (right). The top row shows enlarged views of the regions
with the worst local errors. While SA-Align improves upon the uncalibrated case it still displays significant misalignment. By
contrast, our algorithm’s worst local errors are barely visible. The bottom row shows photographs of the entire 18’�8’ multi-
projector display surface. In this experiment, the 12 projectors on the left side were mounted carefully (manually) while the 12
projectors on the right were placed haphazardly. Here, SA-Align converges to a bad solution where both sides of the display
are distorted. Our technique corrects for all of the distortions and displays an image with very little global error.

Table 3: Running time (minutes)

Proj. Chen et al. Our system
array Camera Compute Camera Compute
2�2 12 71 1 <1
3�3 37 84 2 2
6�4 130 91 9 6

4. Conclusion

This paper describes a practical vision-based system for
automatically calibrating large format multi-projector dis-
plays. Our algorithm is substantially more accurate than
previous solutions (in both local and global metrics) and
runs an order of magnitude faster. It is now used regularly
to calibrate the Princeton Display Wall.
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