
Development of Cluster-based Image Viewer

Justin Binns, Michael E. Papka, and Rick Stevens
Argonne National Laboratory

Argonne, IL 60439
{binns,papka,stevens}@mcs.anl.gov

Qian Peng and David Schissel
General Atomics

San Diego, CA 92121
{peng,schissel}@fusion.gat.com

Abstract

 In this paper, we describe the problems
unique to application development in a cluster-
driven tiled display environment. We focus on a
large-format image viewing application. In-
cluded is a brief exploration of the motivations
for both tiled displays and large-format image
viewer, followed by an in-depth description of
the problems associated with the development
of the image viewers and the specific approach
taken to solve these problems. We conclude
with a summary of our current solution and a
brief discussion of future work.

1. Technical Background
 Many factors have motivated the develop-
ment of tiled display technology, including

• display of large-scale datasets,
• display of many simultaneous conventional

windows,
• large format presentations to audiences,
• group interaction with a single data display.

Further details on tiled display technology can
be found in [1]. We will focus on the display of
large-scale images, particularly those containing
many millions of data points. In order to view
such images on an individual workstation, either
compression of the data (resulting in loss of de-
tail) or expansion of the data (resulting in loss of
context) is required. Because tiled displays pro-
vide a great many pixels they are particularly
suited to these types of images. The more pix-
els available for viewing at once, the less com-
pression or expansion of such an image is re-
quired, and the more accurate the representa-
tion of the large data may be.

A variety of methods are used for creating
tiled displays, the most common being projection
from multiple projectors onto a common surface.
Accompanied by an alignment technique and
appropriate software, a single image can be pro-
duced with many more display pixels than are
available from a single projector.

Node 1 Node 2 Node 3

Node 4 Node 5 Node 6

Cluster
Communication

Tile 1 Tile 2 Tile 3

Tile 4 Tile 5 Tile 6

Figure 1) Representation of the architecture of a Cluster-
driven Tiled Display. Notice that each computer (or Node)
drives a single tile of video.

 In the tiled displays that were used for this
development, a cluster of Linux computers pro-
vided one machine for each projector in the dis-
play (see Figure 1). This distributed format al-
lows for easy scalability in display size but intro-
duces all the problems of cluster-based parallel
application development, such as [2]

• synchronization of data processing,
• distribution of data to multiple processes,

particularly without shared memory, and
• synchronized job startup.

Such a model also introduces a host of prob-
lems arising from the strict association of cluster
node to display position. For example,

• Specific data local to each node requires

node-specific processor bindings.
• All nodes must process data in approxi-

mately the same time, or the performance of
the whole system suffers.

• Local node computation is highly dependent
on global state, which must be maintained
and distributed regularly and in a timely
manner.

2. Motivation
 One application of prime interest in a tiled
display system is a large-format image viewer.
Such an image viewer enables both clearer and

more accurate viewing of such large datasets
(e.g. those produced through large dataset visu-
alization, high-resolution photography, satellite
imagery). The large-format image viewer also
enables shared analysis and easy demonstra-
tion of results among groups.
 Examples of large images that may benefit
from a tiled display image viewing application
are many and varied; we will provide two. Each
of these is a real problem, being analyzed today
using the large-format image viewing techniques
described here.
 The first is a representation of the metabolic
pathways within a cell, presented as an 8640 x
6020 pixel image with symbols and lines repre-
senting chemicals and processes, respectively.
This image is information dense in fact, if the
image is scaled down such that all pathways are
viewable on a single monitor, the text, describing
specific chemicals and pathway characteristics
becomes completely unreadable. Conversely
scaling the image up so that the text can be read
on the average desktop makes it impossible to
follow individual pathways to study the interac-
tions during the metabolic processes being de-
scribed.
 The second example is a Synthetic Aperture
Radar, or SAR, strip-map image, resulting from
image acquisition during a fly-by. SAR strip-
map images can be arbitrarily long and are 3500
pixels wide. Viewing these images is very diffi-
cult on the desktop where each pixel in the im-
age represents as much as one foot of real
ground space, making important features often
only a few pixels in size, but identifying those
features often requires the context of a large
portion of the strip-map. Once again, viewing
the entire image makes the individual features to
small too see, while viewing the individual fea-
tures loses the context necessary to identify
them.

3. Problem Description
 A large-format image viewing application
such as that described above must support, at a
minimum, panning and variable scale. Addi-
tional features may include annotation, subi-
mage lookup, presentation features, and clients
on a variety of platforms and in a variety of form
factors. Some of these features are addressed
in our current solution; some are saved for future
work. In creating such an application, there are
four distinct problem domains:

• Moving image data to the screen

• Control and synchronization of the various
(distributed) display processes

• Client-server interaction methods
• User interface design

4. Technical Approach
 Our approach to each of the problem do-
mains discussed above has been dictated both
by the nature of our cluster and by our experi-
ence in the development of a tiled display movie
player application[3]. Development of several
proto-types has verified our choices, and in most
cases our basic technical approach has not
changed, though the implementation details
have varied to improve the interaction experi-
ence and the application capabilities.

4.1 Display Mechanism
 To get pixels to the screen, we originally
used raw pixel transfer, initially using glDraw-
Pixels() calls and progressing to the Simple Di-
rectMedia Layer [4] abstraction of a raw X blit.
As we explored the requirements of the image
panning application, however, it became clear
that linear interpolation would be required to
produce accurate scaled results of arbitrary
datasets. Such calculations can be done “by
hand”, in the main CPU, but the graphics hard-
ware (being accelerated 3D OpenGL graphics
cards) supports such operations natively. In
order to utilize this accelerated computation
method, we decided to use OpenGL textures
instead of raw pixel transfers.

4.2 Communication and Synchronization
 The second problem domain, communica-
tion and synchronization among display proc-
esses, can be partially described by analyzing
the three contexts in which the application must
store and calculate information (see Figure 2).

Image Context

Tiled Display Context
Local (Projector)

Context

Figure 2) The three contexts in which the application must
function: the image context, the tiled display context, and the
local projected context.

 The largest (“outermost”) context is that of
the image itself, since the image is the basis of
the interaction and is most often larger than the
tiled display. The second context is the tiled
display context, encompassing the portion of the
image being displayed on the tiled display de-
vice. The third context is the local projected
context, encompassing the portion of the tiled
display context that is displayed on the local,
single-process frame buffer. Each node must be
aware of the current state of all three of these
contexts in order to draw the appropriate portion
of the image. However, while the local context
can be calculated on each node, the global and
image contexts must be synchronized among
the nodes in a regular and timely fashion.
 We initially decided to use MPI for inter-
process communication in the display proc-
esses, because these processes are tightly
bound and the communications that must take
place are easily mapped to MPI operations. The
model of the application is in the master-slave
form. The master, which is not responsible for
any display, is instead responsible for interaction
with the user interface client. The master also
maintains a unified view of the image and tiled
display context states and communicating those
states to the individual display processes. The
display processes (slaves) can, given the Con-
text information provided by the master, calcu-
late their local projected contexts appropriately.
The display processes need to communicate
with each other only to synchronize display up-
dates, so that the user sees a single unified up-
date, maintaining the single-display illusion.

4.3 Third-Party Communication
 Early in the development cycle of the first
prototype, we decided that the user interface
client component should be separated from the
server component, such that they may operate
independently. We also decided that multiple
clients should be supported for a single tiled dis-
play image viewer session, allowing multiple
people to interact with the image simultaneously.
 This type of interaction, between the client
and the parallel application that is the server, is
unusual in the parallel programming field. Third-
party communications – hamper the ability of
non-members of a parallel computation to inter-
act with and manipulate that computation in real
time are a valuable part of the research that we
have done in developing this image viewer ap-
plication. We expect that this research will ulti-
mately open the door for a wide class of user

interactions with parallel applications, both within
tiled display environments and elsewhere.
 Our technical approach involved an inde-
pendent client-server network connection, han-
dled on the image viewer side by the master
process, and designed in such a way as to sup-
port multiple connections on the image viewer
side, as well as to gracefully handle client fail-
ures.

4.4 User Interaction

The end, the user interface design must
meet the requirements of the individual user
community for which the application is targeted.
Typically, a preview window must be present, so
that the user may have some notion of the re-
sults of planned actions. In support of this, we
chose to have the preview window display, at a
minimum, the full extent of the displayed image
and the portion of that image being actively
viewed on the tiled display.

5. Overview of Prototype Develop-
ment and Progression
 Since this project was originally conceived,
we have developed three distinct prototypes. In
this section we briefly describe the first two pro-
totypes and list the lessons learned from each.
The most recent prototype, which is actively be-
ing used by individuals outside our lab, is de-
scribed in more detail.
 The first prototype image-viewer application
was severely restricted in functionality and
served primarily to prove the utility of the appli-
cation and the validity of some of our initial
choices. The application uses a direct-to-screen
mechanism for drawing pixel data, MPI commu-
nications in the master-slave organization de-
scribed above for communication, a custom pro-
tocol library for client-server interactions, and a
basic user interface providing a representation
of the full image and a superimposed box on
that image representing the portion displayed on
the tiled display. The use of the direct-to-screen
drawing mechanism allowed for very fast display
of the image data, but did not provide any facility
for variable scale. In essence, the only features
supported by this early prototype were the ability
to load moderately large images (preload of the
image into memory was used for performance,
so the only restriction was that the image fit in
memory on each display node) and the ability to
view those images on the Tiled Display, with
panning support.

Nevertheless, this simple prototype was
enough for us to confirm that our hypothesis
about the utility of such an application to a wide
range of fields. After demonstrating this applica-
tion to several potential users, we identified the
following needs:

• A simpler client-server interaction mecha-

nism
• A new display mechanism that would easily

support image scaling
• Mechanisms for loading image data on an

as-needed basis, to support images larger
than the available memory on the display
machines

• A generalization of the master-slave com-
munication mechanism to support arbitrary
tiled display configurations

With the above feedback in hand, we devel-

oped the second prototype. This prototype used

• OpenGL textures for display;
• the same MPI communications mecha-

nisms, but with more well-abstracted data
communication boundaries to support arbi-
trary tiled display configurations;

• a new, simpler, custom protocol library for
client-server interaction; and

• a new client, providing the same base func-
tionality as the prototype client, but adding
support for variable scale.

The new abstractions for data communica-

tions between the master and the slaves allowed
for on-demand image loading that, while slowing
the interaction with the image somewhat, en-
abled uniform performance independent of im-
age size. That is, arbitrarily sized images could
be loaded with roughly identical performance.

This prototype was again demonstrated to
members of several communities and used by
individuals outside our group. Again several
needs were identified:

• A still simpler interaction method between

client and server (see Figure 3)
• Better interaction performance when the

image is suitably small
• Several client implementations, including at

least one that would operate on a handheld
computer, such as the Compaq iPaq, for
untethered interaction with the display

6. Current State of the Application
 The image viewing application is currently in
its third prototype revision. It is actively being
used by individuals both inside and outside our
research group (see Figure 4) and is also un-
dergoing further development and feature en-
hancement. In this section we describe the cur-
rent prototype in detail (see Figure 5), including
the various benefits and disadvantages of each
implementation choice.

6.1 Display Mechanism
 The display mechanism for the current ap-
plication revision uses OpenGL textures. Each
texture is loaded on demand either from disk, for
arbitrarily large images, or from a memory
cache, for images that fit within the memory of
the display nodes. This approach allows for
higher performance for suitably small images,
while still supporting very large datasets. The
use of OpenGL textures also provides the appli-
cation with accelerated bilinear interpolation
when the viewed image scale is other than 1:1.
The high-quality linear interpolation provided by
the graphics hardware is key, based on user
feedback, in producing valuable results when
scaling an image.

6.2 Communication and Synchronization
 For communication and synchronization, we
still use the MPI master-slave model. The mas-
ter process, being responsible for client
communications, is also responsible for
maintaining both the image context and the tiled
display context. These contexts are conducted
to all of the slaves at regular intervals using MPI
communication channels. Each slave is then
responsible for calculating its own local pro-
jected context, given transformation parameters
that are assigned during program initialization
and startup. This approach allows for arbitrarily
large, arbitrarily configured tiled display systems,

Client

Client

Client

Server

Server

Server

Message followed by a
ACK (or NACK)

Query followed by an A
(or NACK), followed by
Response

Update (from Server to
Client, no ACK)

Figure 3) The three communication types allowed for in
the original protocol. Note that in the current version of
the application, the first two are replaced by XML-RPC
calls with return values, and the last is implemented by
using a multicast channel for server state broadcasts.

trarily configured tiled display systems, since the
master is not constrained by having to calculate
each slave’s local view of the data.

6.3 Third-Party Communication
 The interaction between client and server is
handled using XMLRPC [5]. This simple, stan-
dard, well-understood protocol allows for a wide
variety of client implementations as well as a
very clear separation of client and server. In
addition, because of the transaction-based na-
ture of XMLRPC, client failures and multiple cli-
ents are both handled with no extra effort on the
part of the server. The simplicity of the existing
language bindings for XMLRPC makes exten-
sion of the set of possible interactions between
client and server nearly trivial.

6.4 User Interaction
 The user interface design is solved in two
ways, representing clients on two platforms.
The first, a client designed for PC or laptop in-
teraction with the image viewer, provides the
following features:

• A preview window, with a box super-

imposed that represents the portion of the
image currently being viewed on the tiled
display

• A set of mouse interactions, using all three
buttons, to provide panning, scaling, and
placement of markers (point-markers, to
mark interesting locations in an image)

• A set of keyboard interactions to perform
common commands, such as centering on a
marker, jumping to 1:1 scale, or fitting the
entire image to the tiled display

 The second client, designed for use on the
Compaq iPaq handheld computer, uses the but-
tons available on the face of the iPaq to provide
functionality similar to the PC client. Since no
keyboard is readily available on the iPaq, all in-
teractions are based on the mouse and the state
of the front-plate buttons. This client uses the
concept of interaction modes, where the function
of mouse movement depends on the mode of
operation, allowing for a wider variety of interac-
tions than would otherwise be possible.

Figure 4) A group of scientists at Argonne explores an aerial photograph of the Argonne National Laboratory site. The full im-
age is 11,167 x 14,604 pixels.

Client

Network Master Process

Slave (Display)
Process

Slave (Display)
Process

Slave (Display)
Process

Projector Projector Projector

. . .

. . .

XML-RPC XML-RPC

MPI Communication
Infrastructure

Figure 5) Architectural overview of the current image
viewing application

7. Conclusion and Future Work
 A tiled display environment, particularly
when driven by a cluster of computers, provides
a unique set of challenges and opportunities for
application development. One powerful applica-
tion for tiled display technology is the viewing of
large-format images. Developing an application
to support such viewing has provided an excel-
lent venue for investigating the general problems
in application development for a tiled display
device. While much work has been done, and
many lessons have been learned, there is still
much room for research.
Our own users, as well as the users outside of
our group, have suggested a variety of im-
provements that can be made to the current im-
age viewer. These proposed changes mostly
involve new or extended ways to interact with
the data. Some of the suggested changes are
the following:

• The ability to select an area to obtain higher-

resolution subimages
• The ability to annotate the data arbitrarily, by

placing markers that contain comments or
other embedded information, or by providing
general information in a variety of formats
attached to a particular dataset

• The ability to provide clickable regions in an
image, allowing users to view additional in-
formation or new images, based on their in-
teraction choices

• Simultaneous viewing of multiple images,
either overlapping or side by side

• Automated analysis features, such as identi-
fying specific regions of complexity or as-
signing colors to multiple images and over-
lapping them to identify specific differences
or similarities

Acknowledgments
We thank the following people: Mark Hereld,
Ivan Judson, and Ti Leggett for their help in the
development of this application, as well as all
the members of the ANL/UC Futures Laboratory.
This work was supported by the Mathematical,
Information, and Computational Sciences Divi-
sion subprogram of the Office of Advanced Sci-
entific Computing Research, U.S. Department of
Energy, under Contract W-31-109-Eng-38 and
included partial support under the auspices of
the Scientific Discovery Through Advanced
Computing Initiative.

References
[1] M. Hereld, I. R. Judson, and R. L. Ste-

vens, "Introduction to Building Projec-
tion-based Tiled Display Systems," IEEE
Computer Graphics & Applications, vol.
20, pp. 22 - 28, 2000.

[2] W. Gropp, E. Lusk, and A. Skjellum,
Using MPI Portable Parallel Pro-
grammming with the Message-Passing
Interface, 2nd ed. Cambridge: MIT
Press, 1999.

[3] V. G. N. C. f. S. Applications, "Display
Wall in a Box," 2001,
www.ncsa.uiuc.edu/TechFocus/Deploy
ment/DBox/overview.html.

[4] H. Wen, "SDL: The DirectX Alternative."
O'Reilly Network, 2001,
http://linux.oreillynet.com/pub/a/linux/20
01/09/21/sdl.html.

[5] D. Winer, "XML-RPC Specification,"
1999, http://www.xmlrpc.com/spec.

