
A GENERAL PURPOSE DATA ANALYSIS MONITORING SYSTEM WITH CASE

STUDIES FROM THE NATIONAL FUSION GRID AND THE DIII–D MDSPLUS

BETWEEN PULSE ANALYSIS SYSTEM

S.M. Flanagan*, J.R. Burruss, C. Ludescher,a D.C. McCune,a Q. Peng, L. Randerson,a

and D.P. Schissel

General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA
aPrinceton University, Princeton, New Jersey 08543 USA

*Corresponding author: email: flanagan@fusion.gat.com,

 phone: (858) 455-4074, Fax: (858) 455-3586

Abstract

As computing infrastructures become more complex, it is important to centralize information

in order to efficiently monitor and maintain computing processes. A general monitoring system

has been developed at the DIII–D National Fusion Facility that combines code run status, data

analysis tracking, logfile access, complex error detection, and expert system capabilities. The

monitoring system’s flexibility and ease of deployment have enabled it to be successfully applied

to two significantly different computing environments.

At DIII–D, the system is being used as the Data Analysis Monitor

(http://nssrv1.gat.com:8000/dam) to allow both application scientists and computer scientists to

monitor the status of between pulse MDSplus dispatched data analysis codes. The monitoring

system is also being used by the National Fusion Collaboratory Project, as the Fusion Grid

Monitor (http://nssrv1.gat.com:8000/fgm), to track multiple asynchronous complex code runs on

the FusionGrid.

Keywords: MDSplus, DIII-D, FusionGrid, Java, Jess, CLIPS, Globus

1. Introduction

As the amount of data being stored and analyzed increases, it becomes important to more

efficiently monitor the growing complexity of the analysis process. By centralizing information,

data analysis applications can easily be monitored, which not only improves the maintenance of

the analysis infrastructure, but allows users to view the status of their code running on

increasingly complex computing environments. Using Java technology, a general monitoring

scheme has been designed that is applicable to a wide range of computing environments. The

monitoring system has been customized to suit very different environments including between

pulse analysis at the DIII-D National Fusion Facility as well as computations on the National

Fusion Collaboratory’s FusionGrid.

The Data Analysis Monitoring (DAM) was originally designed to monitor an increasing

amount of computational data analysis taking place between pulses at DIII–D. With an

increasing amount of data available, more centralized monitoring capabilities were important to

maintain a manageable workload for the physics and operations teams at DIII–D. DAM has

allowed for detection of discrepancies in diagnostic measurements and the results of physics

analysis codes, tracking of data loading into MDSplus, and the evaluation of the acquisition time

of analyzed data.

The same monitoring scheme used to create DAM, was also used to create the Fusion Grid

Monitor (FGM), which was more suited for monitoring a grid computing environment. It was

designed to allow for asynchronous tracking of multiple grid applications, and to provide logfile

access through anonymous FTP. Currently it tracks the state of TRANSP code runs on the

National Fusion Grid (NFG) [1]. The microturbulence code, GS2, will be the next application to

take advantage of the National Fusion Grid, and the Fusion Grid Monitor.

2. The Monitoring System

Any monitoring system first starts with a method of retrieving or receiving data. The obvious

choices then, would be to either poll the involved data sources for the necessary data, or to

require those data sources to send the data to the monitoring system. In a polling system, the

monitor must constantly ask each data source questions regarding their status. This method was

undesirable, as the large amount of effort spent attempting to discover information would result

in an enormous waste of hardware resources (CPU cycles, network traffic). Such a loss of

performance would be especially noticeable in a grid environment, where dozens, or even

hundreds of resources need to be monitored.

As a result, gaining information through posting is necessary when monitoring large scale

infrastructures. The monitoring system was designed to receive information in the form of a

message. These messages can be sent from any code on any machine, however, the server will

only acknowledge a posted message if it is received from a valid, pre-defined host. If the host is

not recognized as a valid host, it will be ignored. This approach was utilized in order to reap the

benefit of real-time information posting, without causing an unnecessary load on the monitored

resources.

The monitoring system uses Java Servlet technology to accept information from an HTTP

post request (Fig. 1). The Java servlet, using HTML, also allows the user interface to be provided

as an easy-to-use web page. When the monitoring system receives a new post, it automatically

updates the user clients via server push. Using this method, HTML can be dynamically created,

and sent to each client when a new post is declared. With server push, HTTP connections are

held open for an indefinite amount of time. By keeping the connection to clients open, the servlet

is able to send information to each client as it becomes available. The advantage gained from this

is that the monitoring system can report information in real-time without reestablishing client

connections, or requiring an excessive amount of interaction with the user clients. Although

browsers such as Netscape and Mozilla support server push, server push is, unfortunately, not

currently compatible with Internet Explorer. The monitoring system, however, is capable of

recognizing connections from Internet Explorer, and switching these users to client-pull. Client-

pull allows the HTML interface to automatically refresh the web page after a predetermined

interval.

The monitoring system is also built with the Java Expert System Shell, Jess [2]. Jess is a

rules-based expert system shell which utilizes the C Language Integrated Production System,

CLIPS [3], in order to define a set of rules. Each fact that is posted to the monitoring system can

then be evaluated by the rules defined in CLIPS. This provides the monitoring system with

reasoning capabilities. This functionality enables a wide range of custom design to be done with

the monitor, such as customized error detection. For instance, if an application or resource is

expected to report to the monitor, the monitor can be customized so that if that particular

resource does not report, an error is thrown, and shown to the connected users.

Any fact that is declared is logged to a relational database. It uses Java’s JDBC and Sybase’s

dblib client to access a relational database. Once stored, the database acts in typical manner, and

users or administrators can query information from the database table that may be several days,

or months, old. This is especially useful for overview evaluation of monitored resources. The

monitor itself specifically takes advantage of querying the database by retrieving information

from the database whenever the servlet is reinitialized. In this case, the database allows the

administrator the ability to recover or update the monitoring system without losing information.

3. The Data Analysis Monitor

At DIII–D, when a pulse happens, raw data is acquired on various data acquisition

computers. When this raw data is acquired, data analysis routines are dispatched. These routines

analyze the raw data, and then store the resulting analyzed data in the data storage system,

MDSplus [4]. The loading of analyzed data into MDSplus may be executed on different

machines within the UNIX analysis cluster. The Data Analysis Monitor (DAM) was originally

designed to monitor the dispatchment of these analysis routines, and the loading of analysis data

into MDSplus.

While the MDSplus loading system is distributed to multiple computers at DIII–D, all

machines can report to DAM using the HTTP post operation via a simple Java program,

SendPost. Since SendPost takes command line inputs, spawning a shell process to execute the

SendPost command makes integrating the posting procedure with the monitored codes painless.

As most of the MDSplus loading at DIII–D is controlled by a single generic IDL routine, it was

only necessary to integrate this Java program with a small number of codes. This enables DAM

to track not only the loading of analyzed data into MDSplus, but the status of the analysis

programs themselves.

An example of a dispatched analysis code tracked by DAM, is the equilibrium/fitting code,

EFIT. EFIT calculations are conducted in parallel on the “STAR” Linux cluster at DIII–D [5].

DAM is used not only to monitor its progress, but also to monitor its performance. To do this,

EFIT communicates to DAM when it has started, when its calculations are complete, and again

when EFIT outputs have been successfully loaded into MDSplus. Based on EFIT benchmarking

on the STAR cluster, the amount of time each of these steps should take can be accurately

estimated for any plasma pulse. If EFIT does not start, complete, or load within the expected

time interval, then the monitoring system alerts the users to the problem. In order to

accommodate this, DAM has been setup with a timer, so that rules may be written in CLIPS that

can report errors referencing data acquisition and loading times.

In addition to dispatched application monitoring, it is also possible to monitor the dispatched

MDSplus phases, which trigger the analysis codes. Recently, action nodes were added to the

DIII–D MDSplus trees. This type of node performs an operation, or action, when specific phases

are declared. They call TDI functions that will send DAM posts regarding which MDSplus

phases have occurred. With this, the MDSplus phases are directly tied into the monitoring

system, allowing for tracking of which phases have occurred, and when they were declared.

4. The Fusion Grid Monitor

With multiple applications distributed throughout the FusionGrid infrastructure it is

important to monitor both the grid resources as well as individual job runs. The FusionGrid is

designed to use the Globus toolkit [6], which contains the Monitoring and Discovery Service,

MDS [6]. The MDS system is suitable for monitoring grid resources, but lacks features such as

access to logfiles and an expert system for customizable error tracking. Because of this, the same

monitoring concepts that were used to develop DAM at DIII–D, were used to develop the Fusion

Grid Monitor (FGM).

With modifications to the original monitoring system, the Fusion Grid Monitor was designed

to help users track multiple grid jobs from distributed applications on the FusionGrid. The

monitoring system was improved to handle asynchronous data tracking, which was not a

previous capability. To allow the different hosts involved in the FusionGrid project to post to the

monitoring system, it was trivial to update the list of valid hosts allowed to post to FGM. With

these changes, FGM is capable of receiving and centralizing data necessary to track multiple

asynchronous grid application runs in real-time.

The access to logfiles was also updated when the FGM was designed for grid monitoring.

DAM uses rcp to access logfiles at DIII–D. With multiple sites involved in the National Fusion

Collaboratory, this method of file access is not possible on the grid, due to security and firewalls

limitations. Logfile access was redesigned to use anonymous FTP to connect to and retrieve

logfiles from FTP servers. It is then up to the administrators to make any such logfiles available

through anonymous FTP. This adds an indirect level of security to files that can be accessed via

FGM. The addition of anonymous FTP allows grid users to see logfiles without needing direct

access to each individual server where the logfiles are located.

FGM currently tracks the transport analysis code, TRANSP, on the FusionGrid. TRANSP

currently runs on a Linux cluster at PPPL and users can remotely submit grid-enabled TRANSP

runs through the code PreTRANSP. Since multiple resources are involved in a grid-enabled

TRANSP run, including Globus authentication and authorization, MDSplus, and PreTRANSP,

the FGM system is used to centralize information regarding each individual job run. Users then,

are capable of using FGM to follow the progress of their job runs without having to have direct

access to the individual components of the run.

In addition, FGM is capable of tracking the overall status of the Grid application. In other

words, if a specific resource is being debugged, or upgraded, the administrator of that resource

can post to FGM the status of the resource. Thus, if a specific host, or grid application is

temporarily unavailable, users can be made aware of this through FGM. In this way, users can be

made aware of the current status of grid applications and services, in a quick manner, without

having to have extensively detailed knowledge of grid computing.

5. Discussion

Since the monitoring system uses a posting method of gathering data, it relies on the

monitored applications to provide it with status updates. While this avoids polling the resources,

and causing unnecessary load, the reliance on the monitored resources to actually send its posts

is an unavoidable issue. However, with a built in expert system shell, and a bit of knowledge

regarding the monitored application, it is possible to customize the monitoring system to know

when an application has not reported. This avoids the problem where applications do not post,

due to a bad state, as well as allowing timely error detection so that the process can be fixed.

DAM is being used to log the progress of the automatic analysis system during operations, as

well as the MDSplus phase dispatchment system. This is especially useful, as MDSplus does not

currently include a software monitoring system. And with the increasing use of MDSplus within

the fusion community, DAM can provide the software tracking and monitoring capabilities that

MDSplus, and other software infrastructures, are currently lacking. DAM has already enabled

software and operations team to more quickly identify problems during operations.

The Fusion Grid Monitor currently tracks TRANSP runs on the FusionGrid, and will soon

track the micro turbulence code GS2. FGM does not yet take full advantage of the expert system,

but as more data is compiled about the monitored grid applications, the expert system will be

used to help customize the monitoring process, and allow for more detailed error detection. It is

also to be expected that eventually, as more applications are added to FGM, and as the number of

posts increase, that the web design for the user interface will need to be updated.

The system requirements to run the monitoring system are relatively small. At DIII–D, both

DAM and FGM have been implemented on a Intel PIII 733 MHz machine running Linux Red

Hat 6.2. With 1 GB of RAM and a 100 BaseT network connection, this machine is easily capable

of running both monitoring system. Jess 5.2 was used to provide the monitor with an expert

system shell. For database connectivity at DIII–D, DAM and FGM both use Java’s JDBC and

Sybase’s free dblib client for Linux. The monitoring system has also been developed using Java

1.3 and JSDK2.1.

Acknowledgment

Work supported by U.S. Department of Energy under Contract No. DE-AC03-99ER54463.

References

[1] The National Fusion Collaboratory, http://www.fusiongrid.org.

[2] Ernest J. Friedman-Hill, “Users Guide for Jess, The Java Expert System Shell,” Sandia

National Laboratories (2001). http://herzberg.ca.sandia.gov/jess/.

[3] J.C. Giarrantano, “CLIPS User’s Guide,” (1998). (http://www.ghg.net/clips/CLIPS.html).

[4] J.A. Stillerman, et al., “MDSplus data acquisition system,” Rev. Sci. Instrum. 68 (1997)

939-942. (http://www.mdsplus.org/).

[5] Q. Peng, et al., “A Linux PC Cluster for Between-Pulse Magnetic Equilibrium

Reconstructions and Other Processor Bound Analyses,” accepted for publication in Rev.

Sci. Instrum.

[6] The Globus Project, http://www.globus.org/.

Figure Caption

Fig. 1. Applications post information to the monitoring system, where it is examined by the

servlet. The servlet passes the information to Jess, which may make further posts to the servlet.

The monitoring system then inserts a line to the relational database, as well as sending updated

HTML to each connected user.

 5.

 1.

 4.

HTTP POST
DATA FLOW

Monitoring System

 2. 3. Relational Database

Servlet

Jess

Application

User Interface
(Web)

1. Applications make HTTP posts to the monitor's Java servlet.
2. Information is passed to the Java Expert System Shell, Jess.
3. Jess may make further posts to the servlet based on the incoming message, and
 the rules defined in C Language Integrated Production System (CLIPS).
4. All posts are logged to a relational database.
5. Each connected user receives an updated HTML display through server push,
 or client pull.

