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ABSTRACT

This paper shows that the performance bottleneck in software 
MPEG-2 video decoders has shifted to memory operations, as 
microprocessor technologies have been improving at a fast rate 
during the past few years. We exploit concurrencies between the 
processor and the memory sub-system at macroblock level to 
alleviate the performance bottleneck. First, the paper introduces 
an interleaved-block order data layout to improve cache perfor-
mance. Second, the paper describes an algorithm to explicitly 
prefetch macroblocks for motion compensation. Finally, the 
paper presents an algorithm to schedule interleaved decoding and 
output at macroblock level. Our implementation and experiments 
show that these methods successfully hide the latency of memory 
and frame buffer. These techniques improve the performance of 
an already optimized software MPEG-2 decoder by about a fac-
tor of two. On a 933 MHz Pentium III PC, the decoder can play 
720p HDTV streams at over 62 frames per second. 

1. INTRODUCTION

Pure software video decoding has the advantage of being cost-
effective and tracking technology well. With various multimedia 
instruction extensions, software decoding of TV or DVD resolu-
tion content without hardware support has become commonplace 
on today's desktop and notebook computers. However, high reso-
lution HDTV decoding still requires a powerful processor or 
assistance from a graphics accelerator. This paper presents meth-
ods to optimize a pure software MPEG-2 decoder to achieve real-
time frame rate for HDTV on an entry-level PC.

In the past, the key to improving the performance of software 
decoders [13] has been to develop ways to satisfy its computa-
tional requirements. Much of the previous work focused on mul-
timedia instruction extensions and effective ways of using such 
instructions to optimize core functions [11][16][17]. As memory 
performance has been improving at a much slower rate than the 
processor during the past decades, the performance bottleneck in 
a decoder has now shifted to memory operations. 

By analyzing the distribution of Cycles-Per-Instruction (CPI) 
of an MMX/SSE optimized software MPEG-2 decoder, we find 
that the stalling of memory operations significantly increases the 
CPI of memory intensive functions. On a 933 MHz Pentium III 
PC, the average CPI of motion compensation is 1.74 and that of 
display is 14.50, several times higher than that of computation 
intensive functions.

To solve the memory performance bottleneck problem, we 
exploit the concurrency between the CPU and the memory sub-
system in modern computers. We first introduce an interleaved- 
block order data layout to improve cache performance. We then 
describe an algorithm to explicitly prefetch macroblocks for 
motion compensation. Finally, we present an algorithm to sched-
ule interleaved decoding and output at macroblock level. Our 

implementation and tests show that these techniques can improve 
the performance of an already highly optimized software decoder 
by about a factor of two. The CPI of motion compensation is 
reduced to 0.7, and that of display 1.07. As a result, the improved 
decoder plays 720p HDTV at over 62 frames per second.

The rest of the paper is organized as follows. Section 2
describes our methodology and testing environments. Section 3
analyzes a software decoder and identifies the bottlenecks. Sec-
tion 4 presents and evaluates our optimization techniques. Sec-
tion 5 discusses related work. Section 6 summarizes our study. 

2. METHODOLOGY AND ENVIRONMENTS

We use CPI as a measure of how well the instructions in a core 
function perform. This is a well known technique in computer 
architecture research to understand the degree of Instruction 
Level Parallelism (ILP). We use Microsoft Visual C++ 6.0 com-
piler with maximum optimization for speed. We use Intel VTune 
4.0 Performance Analyzer to estimate the CPI for functions with 
sequential or iterative structures. The number is calculated as 

, where F is the CPU clock frequency, t is the 
time spent in the measured function, n is its execution count, and 
I is its number of instructions. We obtain n by using the VTune 
profiler, I by hand counting (lacking an automated tool), and t by 
using VTune's time measure.

Our test platform is a PC with a 933MHz Pentium III proces-
sor, 256 MB of PC133 SDRAM, and an NVIDIA GeForce256 
graphics card. The PC runs Windows 2000 Professional SP1. We 
use DirectDraw overlay surfaces with YUYV pixel format for 
color space conversion. No built-in MPEG-2 support is used.

We use 480p and 720p videos to test the performance of a 
decoder, see Table 1. They represent both mainstream and high-
end applications. SPR (Saving Private Ryan) and matrix (The 
Matrix) are two DVD clips. Fish is taken with an HDTV video 
camera, courtesy of Intel Microprocessor Research Lab. Fox5 is 
a clip recorded from the HDTV broadcast of Fox5 station.

Table 1. Test Videos and Baseline Decoders’ Performance

1. PowerDVD 2.55 does not decode HDTV streams.

3. PERFORMANCE BOTTLENECK

We use the codec developed by the MPEG Software Simulation 
Group (MSSG) [5] as a baseline. The decoder iterates on decod-
ing and displaying a picture. During decoding, it processes each 
macroblock through three steps: Variable Length Decoding

Stream Resolution Frames Size
(MB)

Performance (fps)
V0 V1 PDVD

spr 720x480 2,514 58.7 33.5 74.9 80.3
matrix 720x480 2,320 57.5 33.0 77.6 83.1
fish 1,280x720 772 27.3 14.0 32.0 n/a1

fox5 1,280x720 720 22.5 14.4 33.6 n/a1

CPI Ft( ) nI( )⁄=



(VLD), Inverse DCT (IDCT), and Motion Compensation (MC). 
Each of these processing steps along with Display (DISP) has its 
own characteristics in terms of computation and memory band-
width requirement.

• The VLD module reads a small amount of compressed data 
from disk, which can easily fit into the L1 cache of most proces-
sors. Because general-purpose processors are not optimized for 
bit operations, VLD is mostly computation intensive.

• The IDCT module needs only one block of pixel data (64 
short integers) plus some tables, which can fit into the L1 cache 
of a processor easily. It takes a lot of cycles to compute the result; 
therefore it is computation intensive.

• The MC module is computation intensive for three reasons. 
First, it needs to average two or four pixels when half-pixel accu-
racy motion vectors are used. Second, it has to average two mac-
roblocks for bi-directional predictions. Third, it needs to saturate 
the sum of prediction and residual. MC is also memory intensive 
because it is essentially a series of memory copies. For even a 
moderate resolution video, the working set size of three internal 
frame buffers can hardly fit into either the L1 or L2 cache.

• The DISP module used to be computation intensive, when 
the color space conversion was done by CPU. Nowadays virtu-
ally all graphics hardware have built-in support for YCrCb-to-
RGB conversion. DISP has become a pure memory copy, whose 
speed is limited by the memory and bus bandwidth.

There are many methods to attack the computation intensive 
parts of the decoder. We apply these known optimizations to the 
MSSG decoder (Version 0, or V0), including MMX VLD, MMX 
IDCT routine,  and  IDCT fastpaths, and SSE MC 
routines. This results in a highly optimized decoder (V1), with 
performance comparable to a commercial software decoder 
(PowerDVD 2.55). As shown in Table 1, V1 is about 120% faster 
than V0, and only about 7% slower than PowerDVD. 

We profile V1 using the fish video. Table 3 shows the time 
spent in each module and its CPI. We do not include the CPI of 
VLD, because it is difficult to count its number of instructions. 
Clearly, the MC and DISP modules dominate the runtime. The 
0.57 CPI of IDCT indicates that the two MMX pipelines are 
working at nearly full throughput and confirms that IDCT is not 
memory limited. The 1.74 CPI of MC signifies memory stalls in 
MC. The 14.50 CPI of DISP shows that the CPU stalls severely. 
The main reason is that it takes many CPU cycles to transfer data 
in the write buffer to the AGP device. When the write buffer is 
full, further writes have to stall until an early entry is retired.

Figure 1 shows the time sequences of tasks in CPU, memory 
bus, and AGP port in V1. The CPU tasks include VLD, IDCT, 
reads in MC (RMC), computation and writes in MC (WMC), reads 
in DISP (RDISP), and computation and writes in DISP (WDISP). 
Memory read (RMEM), memory write (WMEM), and AGP write 
(WAGP) are initiated by CPU tasks, and may cause dependent 
CPU tasks to stall. This explains the high CPI’s of MC and DISP.

Figure 1. Unoptimized Utilization of System Resources

4. MACROBLOCK LEVEL CONCURRENCY

In this section, we propose three techniques to exploit concurren-
cies among the CPU, the memory sub-system, and the frame 
buffer. We then evaluate these methods with our implementation.

4.1. Interleaved-Block Order of Frame Buffer
Memory caches exploit 1D spatial localities in many applica-
tions. In a video decoder, the reference of data exhibits 2D local-
ities. For example,  macroblocks are read and written at 
a time during MC. With a typical scan-line ordered internal 
frame buffer, such as that in V0 and V1, pixels within an  
block are scattered across 8 cache lines, thus decreasing cache 
locality.

Many architectures, such as Pentium III, provide a mecha-
nism called Write Combine (WC) [6][7] to improve the memory 
write performance. Successive partial writes are buffered and 
collapsed to form a single cache line write, saving an unneces-
sary read during allocation. Because most processors have only a 
handful of WC buffers, these partial writes should happen close 
to each other. With scan-line ordered internal buffers, writing a 
macroblock requires at least 32 partial writes (16 for luma, and 8 
each for chromas), making write combine impossible.

Figure 2. Interleaved-Block Order Layout

To improve cache locality and take advantage of WC, we pro-
pose an interleaved-block order of internal frame buffer. A frame 
buffer is row major ordered on an -block basis. Within a 
block even scan-lines are stored together, followed by odd scan-
lines, as shown in Figure 2. In this layout, a block fits into one or 
two cache lines, thus increasing locality and enabling WC. The 
interleaving structure also benefits field pictures and predictions.

4.2. Explicit Prefetching of Macroblocks
The working set size of a decoder is at least 3 frames. For 720p 
videos, it is about 4.1 MB. It can not fit into the L2 cache of any 
processor. The sequential decoding of macroblocks causes com-
pulsory cache miss for almost every macroblock. Compiler-
directed cache prefetching methods [18][19] were proposed. 
However, the address of reference is data dependent, automati-
cally inserted prefetches are speculative at best. With too few 
prefetches, cache misses can still occur; but with too many, mem-
ory traffic is unduly increased, thus exacerbating the problem. 

Fortunately, in an MPEG-2 video decoder, it is possible to 
prefetch accurately through algorithmic improvement. Because 
motion vectors are coded in the macroblock header, a decoder 
can deduce addresses of reference blocks prior to VLD and 
IDCT, which are not memory intensive. By prefetching reference 
macroblocks in these steps, the decoder hide the memory latency 
of MC. Prefetching works best with interleaved block-order, 
because a block can be prefetched with two instructions.

4.3. Interleaved Output and Decode
There are write buffers in the AGP port for fast burst transfer of 
data. However, writing an entire picture at a time overflows the 
write buffer and causes the overall speed to be the slowest in the 
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pipeline. Experiments show that the sustained transfer rate is 
only about 200MB/s in our system. Display becomes an obstacle 
to high performance MPEG-2 video decoding. 

To achieve real-time HDTV decoding, we exploit the concur-
rency between the CPU and the AGP write buffer. Instead of 
copying an entire picture after it is decoded, we break the copy-
ing process into small units and interleave them with decoding. 
Macroblock is the natural granularity to use, because a picture is 
decoded one macroblock at a time. After the MC of a macrob-
lock in the current frame, one macroblock from the output frame 
is copied to the graphics card. To further reduce the read memory 
latency time, we prefetch the output macroblock before MC.

Table 2. Original and New Algorithms

4.4. New Algorithm
Combining all three methods together, we arrive at a new decod-
ing algorithm. Table 2 compares it with the original one. The new 
time sequence of tasks in the system is shown in Figure 3, (PF for 
Prefetch). Clearly, the algorithm exploits available concurrencies 
and fully utilizes system resources. When display is the only pur-
pose of decoding a stream, we can further reduce the memory 
footprint by not storing B pictures in memory, (not shown).

Figure 3. Optimized Utilization of System Resources

4.5. Evaluations
To evaluate the effect of each proposed technique, we implement 
three new versions of the decoder with new features incremen-
tally added. Interleaved-block order is added in V2, explicit 
prefetching in V3, and interleaved output in V4. We profile all 
four versions with the fish video and calculate the CPI’s for 
IDCT, MC, and DISP modules, as shown in Table 3. The follows 
offer a brief explanation for each version.

Table 3. Profiles of Decoders V1 through V4 (fish)

• V2. Clearly, interleave-block order improves cache locality. 
The time spent in MC is reduced from 9045 ms to 6984 ms. This 
is a 23% improvement for an already optimized module. Because 
of better cache locality and less memory traffic, CPU stalling is 
reduced. Consequently, the CPI of MC is down from 1.74 to 1.52 
and the CPI of DISP from 14.50 to 10.41. We notice that there is 
a greater reduction in the CPI of DISP than the time of DISP. 
This is because interleaved-block order requires more complex 
address calculation. There is a 26% increase of instructions in 
DISP (706 million in V2 versus 558 million in V1). But this 
increase is completely absorbed by the latency in AGP.

• V3. The accurate macroblock prefetching removes the 
memory bottleneck in MC. As a result, the total time in MC is 
reduced from 6984 ms to 3922 ms. The CPI of MC is down from 
1.52 to 0.65, indicating nearly full utilization of the two SSE 
pipelines. Prefetching does introduce overheads, as the times 
spent in VLD and IDCT are increased slightly. Overall, V3 still 
performs better than V2. The frame rate increases to near 40.

• V4. Interleaved output successfully exploits the concurrency 
between the CPU and the AGP write buffer. The time in DISP is 
reduced from 8350 ms to 882 ms, a nearly ten-fold speedup. The 
CPI is cut from 10.42 to 1.07, indicating full resource utilization. 
The effective pixel copy rate reaches 1.613 GB/s, exceeding even 
the theoretical limit of an AGP 4X port. The reason is that the 
AGP port transactions are hidden, and the decoder sees the write 
buffer speed. Again, there are small overheads in other modules, 
but they are overshadowed by the improvement in DISP. As a 
result, the frame rate is now 62.

We run all four test streams with V0, V1 and V4. Table 4
shows the frame rates and the speedup of V4 versus V0 and V1. 
The combined optimizations achieve a 1.7 to 2.0 speedup over 
V1, which is already extensively optimized with MMX/SSE 
instructions. The overall speedup over the original MSSG 
decoder is about 4.0 to 4.7. The improvement for HDTV streams 
is better than that for DVD, because the former is more memory 
bound than the latter in an unoptimized decoder. 

Table 4. Performance Comparison of V0, V1 and V4

5. RELATED WORK

Patel et al. studied the performance of a software MPEG-1 video 
decoder [13] with focus on improving dithering performance. 
Subsequently, much work has focused on introducing and using 
multimedia instructions, such as Lee’s MPEG-1 decoder on HP 

Original Algorithm New Algorithm
For each picture 
   For each macroblock
      Decode MB header and MV
      For each block
         If a block is coded
            Decode and IQ
            IDCT the block
      Motion compensation
   If current picture is B-type
      Display Fcurrent
   Else
      Display Ffwd_ref

For each picture 
   If current picture is B-type
      Set Fout to Fcurrent
   Else
      Set Fout to Ffwd_ref
   For each macroblock
      Decode MB header and MV
      Calculate address of ref MB
      For each block
         Prefetch a ref block
         If a block is coded
            Decode and IQ
            IDCT the block
      Prefetch an MB from Fout
      Motion compensation
      Display the output MB
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Decode MC DISP

V1 V2 V3 V4
T(ms) CPI T(ms) CPI T(ms) CPI T(ms) CPI

VLD 4,276 --- 4,117 --- 4,705 --- 5,059 ---
IDCT 1,437 0.57 1,390 0.55 1,509 0.59 1,454 0.57
MC 9,045 1.74 6,984 1.52 3,922 0.65 4,216 0.70
DISP 8,716 14.50 8,336 10.41 8,350 10.42 882 1.07
Other 628 --- 1,161 --- 835 --- 830 ---
Total 24,102 --- 21,988 --- 19,321 --- 12,441 ---
FPS 32.02 35.13 39.96 62.09

Stream
Frame Rate Speedup of V4 vs.

V0 V1 V4 V0 V1
spr 33.48 74.92 132.72 3.96 1.77
matrix 33.03 77.64 133.97 4.06 1.73
fish 14.06 32.02 62.09 4.42 1.94
fox5 14.38 33.61 67.57 4.70 2.01



PA-RISC with multimedia extensions [11], Zhou et al.’s MPEG-
1 decoder on Sun UltraSPARC with VIS extensions [17], and 
Tung et al.’s MMX optimizations for Cyberlink's MPEG-2 
decoder [16]. Rahaganathan et al. evaluated the performance 
benefits of multimedia extensions on different architectures [14].

There is a large body of literature on improving cache local-
ity. These efforts include algorithm transformation [1] and tiling 
[10]. Prefetching techniques are well studied to address the issue 
of the widening gap between the performance of processor and 
memory. There are hardware prefetching techniques [8] for pro-
grams with sequential accesses, reference prediction table based 
preloading mechanism [3], software controlled prefetching 
[9][2], and compiler directed prefetching [12].

Soderquist and Leeser [15] studied the data cache perfor-
mance of software MPEG-2 video decoders with a hardware sim-
ulator. However, they did not provide implementation or 
simulation results. Zucker et al. studied several hardware or com-
piler-directed prefetching techniques for MPEG-2 video decod-
ing [18][19]. Cucchiara et al. [4] proposed architectural ideas to 
improve multimedia applications in general. 

These studies did not address the issues of how to reorganize 
data structures and algorithms to exploit concurrency among 
CPU, memory sub-system, and frame buffer at fine granularity.

6. CONCLUSION

This paper reports our study on memory performance optimiza-
tions for a software MPEG-2 decoder. By analyzing the distribu-
tions of CPI in the core functions of an optimized decoder, we 
find that its performance bottleneck on today's computers is in 
memory operations. The CPI of the motion compensation mod-
ule is 1.72 while the CPI of display is as high as 14.5.

Based on the principle of concurrency, we propose and evalu-
ate three optimization techniques, including an interleaved-block 
order data layout to improve cache locality, an explicit macrob-
lock prefetching algorithm, and an algorithm to schedule inter-
leaved macroblock decoding and output. Our evaluation shows 
that each optimization improves certain aspect of the decoder and 
that the combined optimizations can remove the memory bottle-
necks in a software MPEG-2 decoder almost completely. The 
resulting software decoder can decode and display 720p HDTV 
streams at over 62 frames per second on a 933 MHz Pentium III 
PC without special hardware support. We notice that using multi-
media instructions extensively alone can speedup the original 
MSSG software decoder by about a factor of two, whereas the 
memory performance optimizations presented in this paper can 
further improve the decoder by another factor of two.

We did not test the decoder with 1080i HDTV streams, 
because the graphics card does not support overlay surfaces as 
large as . However, the decoder itself is not limited 
by the resolution. We plan to find means to evaluate our algo-
rithm for higher resolution streams. Although we implement and 
evaluate the proposed methods on a Pentium III platform, our 
methods are not tied to any particular architecture except for the 
specific prefetching instructions used. We expect the techniques 
described in the paper to apply to other architectures as well.
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