
Abstract

This paper presents a hierarchical parallel MPEG-2
decoder for playing ultra-high-resolution videos on PC clus-
ter based tiled display systems. To maximize parallelism
while minimizing the communication requirements for a PC
cluster, our algorithm uses a two-level splitter approach,
where a root splitter splits an MPEG-2 video stream at the
picture level and passes them to k second-level splitters, each
of which splits the pictures into macroblocks and sends them
to  decoders according to their screen locations.

Our experiments with various configurations show that
this system is highly scalable and has a low and balanced
communication requirement among the PC nodes. On a 
display wall system driven by 21 PCs, the implementation can
play back a  video at 38.9 frames per second.

1. Introduction

Driven by the rapid development of digital projector tech-
nology during the past decade, building a tiled display system
using commodity projectors and a PC cluster has become an
affordable approach to ultra-high-resolution wall-size display
systems [7][10]. High resolution videos can be effective in
applications such as remote data visualization, interactive col-
laboration, and immersive environments. However, most
high-end video processor based video walls only support res-
olutions up to High Definition Television (HDTV). To play
ultra-high-resolution videos with resolution matching that of
a display wall calls for a novel parallel decoding system. 

In a parallel MPEG-2 video decoder for PC cluster based
tiled display wall systems (Figure 1 shows a generalized
scheme), three major components work together. A splitter
divides the input stream into small work units and sends them
to the decoders. The decoders might need to communicate
with each other to decode a picture. Finally, the decoded pix-
els might be redistributed before being displayed. There are
two challenges in successfully building such a system: high
performance and scalability. The system should be able to
play ultra-high-resolution videos at an interactive frame rate
while keeping the communication requirement at a minimum
such that an off-the-shelf network can be used.

Figure 1. A Generalized Parallel Decoder for PC Cluster

In this paper, we present a hierarchical parallel MPEG-2
video decoder for the PC cluster based tiled display wall
architecture. It is called a 1-k-(m,n) system with a root splitter
splitting MPEG-2 video stream at picture level and passing
them to k second-level splitters, each of which splits the pic-
tures at macroblock level and sends macroblocks to one of the

 decoders according to its screen location.
We show that such a system is highly scalable and has a

low and balanced communication requirement among the
cluster nodes. In a 1-4-(4,4) setup, it can play back a

 MPEG-2 video stream at 38.9 frames a second,
or an equivalent bit rate of 130 Mbps.

The rest of the paper is organized as follows. Section 2
gives a brief introduction to the MEPG-2 video standard. Sec-
tion 3 discusses the issues in parallel decoding for a tiled dis-
play system and related previous work. Section 4 presents our
parallel decoder and discusses design issues. Section 5
reports our experimental results. Finally, Section 6 summa-
rizes what we have learned in our study and future work.

2. MPEG-2 Overview

MPEG-2 is a set of ISO standards, consisting of a video
standard, an audio standard, and a system layer standard for
multiplexing. MPEG-2 video removes both spatial and tem-
poral redundancies to achieve high compression ratios. It
removes temporal redundancy by using motion estimation
and compensation. An encoder specifies one or more motion
vectors for macroblocks in some pictures. A motion vector
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points to the closest prediction of the current macroblock
from previous pictures. To further remove spatial redundancy,
the prediction residual is transformed using Discrete Cosine
Transform (DCT) on a block basis, and the resulting coeffi-
cients are quantized and run-length encoded.

There are three types of pictures in an MPEG-2 video
stream: Intra (I), Predicted (P) and Bi-directional predicted
(B). No motion compensation is used in I-pictures. In P-pic-
tures, macroblocks are uni-directionally predicted using only
the last I- or P-picture. In B-pictures, macroblocks can be bi-
directionally predicted using both last and next I- or P-pic-
tures. Figure 2 shows an example of a series of pictures.

Figure 2. A Series of Pictures

In encoded video bitstreams (see Figure 3), a 32-bit byte-
aligned start code is provided for each sequence, GOP, pic-
ture, and slice. However, a macroblock does not have a start
code, nor is its start or end necessarily byte-aligned.

Figure 3. MPEG-2 Video Stream Syntactic Elements

3. Previous Work and Discussion

After Patel et al. first described their software MPEG
video decoder [12], people have proposed various methods to
increase its performance via parallelization at different levels. 

Bilas et al. proposed a parallel decoder on a shared mem-
ory SMP [3] and investigated parallelism at both GOP and
slice levels. The decoder can achieve real time frame rate for
DVD resolution videos and a few frames per second for
HDTV resolution videos. Kwong et al. designed a GOP level
parallel decoder on an IBM SP parallel computer using a
HIPPI network [8]. It only decodes  resolution vid-
eos at 30 fps with 16 nodes. 

Bala et al. proposed a functional parallelization on a 2-
CPU SMP [2]. One thread is used for run length decoding,
IDCT, and motion compensation, while another does the dith-
ering and display. This approach does not scale, because as
the number of processor increases, it becomes harder to parti-
tion the decoder into smaller functional components.

In the hardware front, Lee et al. described an MPEG codec
on a single-chip multiprocessor[9] exploiting both instruction
level and functional parallelism. Yang et al. proposed a vari-
able issue architecture for multi-threading MPEG processing
[13], but no parallelism model and performance data were
given. In the related MPEG encoding field, Yu et al. investi-
gated macroblock and slice level parallelism in encoding
[14]. Akramullah also proposed a data parallel encoder [1].

Most of these methods use a shared memory SMP or
equivalent platform. They focus on improving performance
with more processors, but have not considered the issues in
scaling video resolutions. Because of the high memory band-
width requirement of ultra-high-resolution videos, it is
impossible for an SMP to display such videos even if it can
decode them with enough number of processors. A PC cluster
based display system is much better suited for this purpose.

Let's consider different levels of parallelization with
regard to the following questions: cost of splitting, inter-
decoder communication, and pixel redistribution cost.

• Sequence or GOP level: Because there are byte-aligned
start codes for sequences and GOPs, the cost of splitting is
minimum. Sequences and most GOPs (closed GOP) are self-
contained, therefore the decoders do not need to communicate
with each other. However, the cost of pixel redistribution is
extremely high. A decoder needs to send out 
of every picture to other nodes for display.

• Picture level: The splitting cost is minimum due to the
start code. The decoders need to fetch reference blocks
remotely in order to decode a P- or B-picture: up to one entire
picture for a P-picture, and two for a B-picture. The pixel
redistribution cost is the same as in GOP level parallelism.

• Slice level: The splitting cost is also minimum. Inter-
decoder communication is reduced. Because the splitter can
group adjacent slices together to form a work unit, a decoder
only needs to fetch remote data when a macroblock refer-
ences data outside the region. The pixel redistribution cost is
also reduced. Typically, a slice covers a row of macroblocks,
thus only of a slice needs to be sent to other nodes.

• Macroblock or block level: The splitting cost is high.
Due to the lack of start code a splitter has to parse an entire
picture to access a macroblock or block. Inter-decoder com-
munication is further reduced. A macroblock is sent to the
node where it will be displayed, thus each decoder decodes a
rectangle area of a picture. It needs to fetch remote blocks
only when a motion vector crosses the boundary of the rect-
angle. In this arrangement, no pixel redistribution is needed.

Table 1. Comparison of Different Types of Parallelization

As we can see from Table 1, none of these methods suf-
fices in itself. In a coarse granularity parallelization, i.e.,
sequence, GOP, picture, slice, the splitting cost is very low,
but the communication cost is high. In a fine granularity par-
allelism, i.e., macroblock level, the communication cost is
low and distributed, but the splitting cost is high, which
becomes a bottleneck when the number of decoders increases.
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Sequence very low none very high
GOP very low none or low very high
Picture very low very high very high
Slice very low moderate to high moderate to high
Macroblock 
or Block high moderate none
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4. Hierarchical Decoding

An ideal parallel decoder should satisfy the following:
• The communication requirement is low and balanced,

such that an off-the-shelf network is adequate;
• The decoding system is bottleneck free;
• It should achieve real-time decoding of higher resolution

videos with more nodes. We call this resolution-scalability.

4.1. Hybrid Granularity Hierarchical Decoder

A macroblock level parallel decoder has low and balanced
communication requirement, but the high splitting cost
causes the splitter to become a bottleneck for videos with res-
olution higher than HDTV. As noted before, P- and B-pic-
tures have dependencies on previous pictures when being
decoded. However, this dependency is nonexistent when the
pictures are being split, because a splitter does not motion
compensate. Thus multiple pictures can be assigned to multi-
ple independent splitters simultaneously, thereby eliminating
the bottleneck. Based on this important observation, we
designed a hybrid granularity hierarchical decoder. 

The system consists of one or two levels of splitters and a
set of decoders. For relatively low-resolution videos, such as
DVD or HDTV, a single macroblock-level splitter is ade-
quate. For high-resolution videos, the system uses a root split-
ter to split the input video at picture level and pass pictures to
multiple second-level splitters, which split pictures at mac-
roblock level to feed the decoders. We call it a 1-k-(m,n) sys-
tem for a hierarchy of one root picture splitter, k second-level
macroblock splitters, and  decoders in a tiled -
projector display wall system. The root splitter runs on a con-
sole PC while the k second-level splitters run on k additional
PCs. A single-level macroblock parallel decoder is a special
case where k = 1; we call it a 1-(m,n) system.

Table 2 lists the high level algorithms for the root splitter,
the second-level splitters, and the decoders.

• The root splitter scans an bit stream to find out where a
picture starts and ends, copies the picture data to an output
buffer, and then sends it to one of the k second-level splitters
in a round-robin fashion to balance the workload.

• A second-level splitter parses a picture into macroblocks,
and sorts them into  output buffers. We call them sub-
pictures (SP). They do not necessarily conform to MPEG-2
syntax. The splitter then sends the sub-pictures to the corre-
sponding decoders. Because there is no inter-picture depen-
dency, the second-level splitters operate independently. 

• A decoder (D) decodes the sub-picture it receives one
macroblock at a time. When a macroblock's motion vector
crosses the boundary of the decoder's screen rectangle, the
decoder needs to fetch blocks remotely.

Table 2. High Level Algorithms

The description of the algorithms above is straightforward,
but it requires careful designs to be efficient. In the following
subsections we discuss several design issues we faced, and
the choices we made.

4.2. Pre-calculation of Remote Macroblocks

Fetching remote blocks on demand can be inefficient.
First, the decoder has to block and wait. Second, a dedicate
server thread is required, which introduces many context
switches. An alternative to this is to pre-calculate who needs
which macroblocks. Because a second-level splitter parses
the entire picture during splitting, it has the knowledge of
which macroblock on which decoder references remote
blocks from which other decoder. To take advantage of this,
we add a macroblock exchange instruction buffer called MEI
for each decoder. When a motion vector of macroblock M in
the rectangle of D(i) crosses the boundary and references
blocks from D(j), the splitter appends an instruction SEND(x,
y, i) to MEI(j) and RECV(x, y, j) to MEI(i), where (x, y) is the
coordinate of the reference block. After the entire picture is
split, the splitter sends MEI(i) and SP(i) to D(i).

When a decoder receives the MEI and SP, it executes the
SEND instructions before decoding the picture. This is possi-
ble because the reference blocks are always in previously
decoded pictures. During decoding, when a decoder needs a
remote block, it verifies its coordinates with a RECV instruc-
tion and reads the block locally. 

We call this method pre-calculation of remote macrob-
locks. It eliminates the need of multi-threading in decoders
and reduces the overhead of blocking receive to a minimum.
The message exchanges also serve as a way of synchroniza-
tion, so that no two decoders are off by more than one frame.

4.3. Decoder State Propagation

Within a slice, the DC coefficients and motion vectors of a
macroblock are predicted from those of the last macroblock.
Because each decoder might only get a portion of an original
slice, the splitter needs to send these predictors to the decoder
so that it can decode the partial slice correctly.

To propagate the information efficiently, we create a State
Propagation Header (SPH) for sub-picture bit streams. When
two adjacent macroblocks in a sub-picture are not from the

Root Splitter:
While there are more pictures in the stream

Copy the current picture P into an output buffer
Select a second-level splitter
Send picture to the splitter
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Second-level Splitter:
While splitting has not finished

Receive a picture P from the root
For each macroblock M

For each decoder D(i)
If M lies in the rectangle of D(i)

Append M to buffer SP(i)
Send SP’s to D’s

Decoder:
While decoding has not finished

Receive SP from second-level splitter
Decode SP; fetch blocks remotely if necessary
Display the picture



same slice, we insert an SPH between them. The header con-
tains the macroblock mode, current DC coefficients, motion
vector predictors, and macroblock address increment. 

As mentioned in the MPEG-2 overview, a macroblock
does not necessarily start or end at byte boundaries. To avoid
costly bit shifting operations for realigning partial slices, we
copy all the bytes that contain a partial slice from the original
stream, and specify in SPH how many bits (0 to 7) should be
skipped at the beginning, see Figure 4. Although SPH and the
unused bits increase the size of bit stream, every row of mac-
roblocks in a sub-picture needs only one header. We show in
the evaluation section that the overhead introduced is small.

Figure 4. Partial Slices in a Sub-Picture

4.4. Zero-Copy Data Transfer

We use the GM library [11] over Myrinet [4] for fast user
level communication. To avoid memory copies in sending
and receiving network messages, we design the protocol such
that the receiver always posts receive buffers before the
sender sends any data. A receiver can be either a second-level
splitter or a decoder, and a sender is either the root splitter or
a second-level splitter, respectively.

We use two receive buffers to implement a simple flow
control. Initially, a receiver posts two receive buffers. After it
receives and consumes a message, the receiver recycles the
previous receive buffer and sends an ack/go-ahead message
to the sender to indicate that a new receive buffer is available.
A sender first performs its work. Then, except for the first
time, it waits for an ack from the receiver before sending the
data. As we can see in Figure 5, this method eliminates mem-
ory copy and minimizes the time spent on blocking receives.

4.5. Ordering of Pictures

Because the GM library does not maintain the order of
messages from different senders, we design a protocol to keep
the proper ordering of pictures arriving at the decoders. A
naive solution of using frame number requires the decoders to
keep a queue of incoming pictures and reorder them. Instead,
we make use of the ack/go-ahead messages in our protocol to
eliminate queuing.

When multiple splitters exist, we re-direct a decoder’s ack
message to the next splitter instead of the sender of the pic-
ture. Consider k splitters. When splitter a sends a picture to
the decoders, it also sends the node id of the splitter responsi-
ble for the next picture, i.e., b = (a + 1) mod k. We call it ack-
node-id (ANID). When a decoder receives a message from
any splitter, it first extracts the ANID; then instead of sending

the ack to the sender, it sends the ack to node ANID. This
allows splitter b to send the next picture.

To make the number of second-levels splitters flexible, we
hide the information about second-level splitters from each
other. Instead, the root splitter will send the next splitter id
(NSID) along with the picture data to a second-level splitter.

Table 3. Refined Algorithms

Table 3 lists the refined algorithms for the root splitter, the
second-level splitters, and the decoders. Figure 5 shows the
flow of work units and messages in a system where k = 2.
Since message exchanges among decoders are irrelevant, we
use one column for all the decoders.

4.6. Configuration Determination

Currently, we determine the configuration of the 1-k-(m,n)
system empirically, based on the video stream resolution.

We determine m and n by matching the video resolution
with the resolution of a tiled display wall. For example, a

 video stream would require m = 4 and n = 4 if
the resolution of each tile is .

We determine k by matching the speed of splitters and
decoders. Suppose it takes  to split a picture at macroblock

SPHSPH 6

Original Bitstream

Sub-picture

Byte Partial Slice SPH

Root splitter:
a = 0
While there are more pictures

Copy a picture P to send buffer
Wait for ACK from any splitter, except for the first picture
Send P to splitter a, with NSID = (a+1) % k
a = (a+1) % k

Second-level Splitter:
Post two receive buffers for incoming messages
While there are more pictures

Recycle the previous receive buffer
Receive picture P from root, with NSID = b
Send ACK to root
For each macroblock M

For each decoder D(i)
If M lies in the rectangle of D(i)

Append M to buffer SP(i)
If M references data at (x,y) of D(j)

Append SEND(x,y,i) to MEI(j)
Append RECV(x,y,j) to MEI(i)

Wait for ACK from all decoders, except for the very first 
picture in a stream
Send MEI’s and SP’s to D’s, with ANID = b

Decoder:
Post two receive buffers for incoming messages
While there are more pictures

Recycle the previous receive buffer
Receive MEI and SP from splitter, with ANID = b
Send ACK to splitter b
Execute SEND instruction in MEI
Decode SP; get remote macroblocks according to RECV’s
Display the picture

3840 2800×
1024 768×
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level, and  to decode and display a sub-picture, the overall
frame rate is given by the following formula:

When  the splitters are the bottlenecks in the sys-
tem, and the decoders are not running at full speed. When

 the decoders are running at full speed. Therefore the
optimum value of k is . If this value equals 1, we can
save the second-level splitter by using a 1-(m,n) system.

Figure 5. Flow of Work Units and Messages in a
Two-Level System

5. Experiments and Results

We implemented the hierarchical parallel MPEG-2
decoder and evaluated its performance on the Princeton Scal-
able Display Wall system. We focus on these four questions:

• When do we need two-level splitting?
• For a given video stream, does the decoder scale in per-

formance with increasing number of PCs in the cluster?
• Does the decoder scale with increasing video resolution?
• How much communication bandwidth is required and is

that well balanced among all the nodes?

5.1. Test Platform

The display wall system consists of 24 DLP projectors in a
configuration with an  rear projection screen.

The resolution of each projector is , and there is
roughly a 40 pixel overlap between adjacent projectors for
edge blending. The total resolution is about . The
display wall has 25 PCs in a cluster connected by Myrinet.
The console PC has a 550 MHz Pentium III processor and 1
GB of SDRAM. Each projector is driven by a PC workstation
with a 733 MHz Pentium III processor, 256 MB of RDRAM,
and an NVIDIA GeForce2 GTS graphics card.

Our experiments used a fraction of the display wall sys-
tem. We used the console PC as the root splitter, up to 5 PCs
as second-level splitters, and up to 16 PCs as decoders. The
screen configurations in our experiments include ,

, , , , , and .
Because of the overlapping regions between adjacent pro-

jectors, some macroblocks are sent to multiple decoders. This
causes some overhead, especially for low resolution videos,
as we will notice in the evaluations.

Table 4. Characteristics of Test Video Streams
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Ack
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Recv Pn-1
Ack

Decode 
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Recv Pn
Ack

Decode
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END

END

END

END 

Splitter 0 

Stream Name Resolution Average Frame 
Size (Byte)

Bit Per 
Pixel

1 spr 720 x 480 28873.75 0.668
2 matrix 720 x 480 25032.65 0.579
3 t2 720 x 480 32810.20 0.759
4 anim7.5 1000 x 750 31734.24 0.338
5 fish2 1280 x 720 35223.68 0.306
6 fish3 1280 x 720 35185.45 0.305
7 fish6 1280 x 720 35168.18 0.305
8 fish8 1280 x 720 35239.03 0.306
9 fox5 1280 x 720 30925.03 0.268

10 nbc4 1920 x 1080 74249.08 0.286
11 cbs3 1920 x 1080 75261.80 0.290
12 anim30 2000 x 1500 125693.42 0.335
13 orion40 2880 x 1440 166852.45 0.322
14 orion60 2880 x 2160 250388.21 0.322
15 orion80 3840 x 2160 333758.54 0.322
16 orion100 3840 x 2800 416968.77 0.310

6 4× 18' 8'×
1024 768×

6000 3000×

1 1×
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5.2. Test Video Streams

We used 16 MPEG-2 video streams with resolutions rang-
ing from DVD to near IMAX to test the performance and
scalability of the system, see Table 4. Stream 1 to 3 are clips
from the movie Saving Private Ryan, The Matrix and Termi-
nator 2, respectively. Stream 4 is a scene from a short anima-
tion made by Adam Finkelstein. Streams 5 through 8 are
shots of a fish tank taken with an HDTV video camera, cour-
tesy of Intel MRL. Stream 9 is a video clip recorded from the
HDTV broadcast of FOX5 in 720p format. Streams 10 and 11
are clips recorded from NBC4 and CBS3 in 1080i format
respectively. Stream 12 has the same content as stream 4 but
is rendered at quadrupled resolution. Streams 13 through 16
are compressed from results of fly-through visualization of
the Orion Nebula, courtesy of UCSD supercomputing center.

All streams except the first three have about the same bit
rate per pixel, 0.3 bpp. This translates to a bitstream rate of
about 20 Mbps for HDTV stream 720p at 60 fps, 1080i at 30
fps, and about 100 Mbps for the highest resolution Orion
flyby sequence at 30 fps. The first three streams are com-
pressed for DVD, and have a higher bit rate. Each sequence is
trimmed to contain 240 frames.

5.3. Performance of One-Level Splitting

This experiment shows when the splitter in a 1-(m,n) sys-
tem becomes a bottleneck. We played stream 1 (DVD) and
stream 8 (720p HDTV) on a one-level system with screen
configurations ranging from  to . The frame rates
are listed in the left half of Table 5. A plot of frame rate ver-
sus total number of nodes ( ) are shown as the dashed
lines in Figure 6.

We can see that when the number of decoders is greater
than 4, the splitter can not keep up with the decoders and
becomes a bottleneck. When the number of decoders further
increases, the frame rates drops slightly for reasons that will
be explained in the next subsection.

Table 5. Frame Rate of One-Level and Two-Level Systems

5.4. Two-Level Splitting Frame Rate Scalability

In this experiment, we try to remove the bottleneck with
second-level splitters. We determine k by increasing it until
the overall frame rate stops increasing. The results are shown

in the right half of Table 5. The plots are shown as the solid
lines in Figure 6, with number of nodes being .
The bottleneck is clearly removed, and the system achieves
good frame rates as the number of decoders increases.

Figure 6. Frame Rate of One-Level and Two-Level systems

However, the acceleration is less than linear. This occurs
for the same reason that the frame rate of a one-level system
drops after saturation. Given a fixed resolution video stream,
each decoder is responsible for less macroblocks when the
number of decoders increases. Thus, the percentage of mac-
roblocks that reference remote blocks increases. As a result,
the decoders spend more time in fetching remote blocks. To
illustrate this, we profile the decoders in both  and 
settings for stream 8 and break down the runtime into five
parts:

• Work: the time to decode and display a picture
• Serve: the time to prepare data for remote decoders
• Receive: the time waiting for sub-picture from splitters
• Wait: the time waiting for remote blocks
• Ack: the time to send acks to splitters
Figure 7 shows the runtime breakdown of each decoder

and their average for both  and  setups. We can see
that while about 80% of the runtime is spent in decoding in a
1-2-(2,2) system, only about 40% of the runtime is spent in
decoding in a 1-5-(4,4) system. The percentage of serving
remote decoders increases significantly because more mac-
roblocks reference remote blocks. Also, increased contention
in the network causes the receiving time to increase slightly.

Figure 7. Runtime Breakdown of Decoders

One-Level System Two-Level System
Stream 1 Stream 8 Stream 1 Stream 8

config fps config fps config fps config fps
1-(1,1) 97.8 1-(1,1) 49.9 1-(1,1) 97.8 1-(1,1) 49.9
1-(2,1) 160.3 1-(2,1) 90.7 1-(2,1) 160.3 1-(2,1) 90.7
1-(2,2) 242.2 1-(2,2) 153.21-2-(2,2) 245.11-2-(2,2) 155.4
1-(3,2) 260.2 1-(3,2) 142.41-2-(3,2) 292.01-2-(3,2) 191.1
1-(3,3) 243.8 1-(3,3) 133.21-2-(3,3) 330.01-3-(3,3) 242.3
1-(4,3) 231.4 1-(4,3) 125.01-3-(4,3) 360.31-4-(4,3) 274.8
1-(4,4) 219.8 1-(4,4) 116.61-3-(4,4) 398.41-5-(4,4) 315.9
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As stated before, frame rate scalability is not critical once
we achieve the real time frame rate. The more important
question is whether the system can decode higher resolution
streams with more decoders.

5.5. Two-Level Splitting Resolution Scalability

To test the resolution scalability of our two-level system,
we run each of the 16 streams with an appropriate number of
decoders such that the video resolution matches the screen
resolution. As in 5.4, the number of second-level splitters is
chosen to keep the decoders running at full speed. Table 6
shows the screen configuration, frame rate, and the rate of
total decoded pixel for each stream. The apparent drop of
frame rate (after stream 10) is due to the increased number of
pixels per decoder.

Table 6. Frame Rate of All Streams in Two-Level System

Figure 8. Pixel Decoding Rate of Two-Level System

 Figure 8 shows a plot of pixel decoding rate versus num-
ber of nodes. When multiple streams exist for one configura-

tion, we use the average value. The two-level system achieves
a near linear acceleration, and scales well.

There is a slight drop of performance for the four highest
resolution videos. We notice that in these videos, the majority
of motion and visual details are located in a portion of the
entire screen. Because an MPEG-2 video encoder allocates
bits according to the scene complexity within a picture, in a
tile containing complex motion and detail, the bit-rate of the
decoder is much higher than that of a decoder with less
motion and detail. When the decoders are synchronized, the
overall frame rate is determined by the slowest decoder. 

5.6. Bandwidth Requirement

In this experiment, we measure the send and receive band-
width of each decoder and splitter in a 1-4-(4,4) system decod-
ing stream 16. The results are shown in Figure 9. We can see
that even for an ultra-high-resolution video with localized
detail, the communication requirement is still low and bal-
anced. It is well within the range of current commodity net-
work technologies. The SPH headers in sub-pictures cause the
send bandwidth of a splitter to be larger than its receive band-
width. However, the overhead is only about 20%.

Figure 9. Send and Receive Bandwidth of Each
Node in a 1-4-(4,4) System Decoding Stream 16

6. Conclusion and Future Work

This paper presents a hierarchical parallel MPEG-2 video
decoder for ultra-high-resolution video streams on a PC clus-
ter based tiled display system. The approach combines pic-
ture level splitting with macroblock level splitting to avoid
the splitting bottleneck in a parallel decoder. Our experiments
on a display wall system shows that our decoder has high per-
formance and is highly scalable. It not only supports very
high frame rate decoding of normal resolution video, but also
can achieve real time frame rate for ultra-high resolution
video streams.

Because of the low bandwidth requirement, we expect our
system to perform well beyond the scales and resolutions
reported in this paper. This can be useful for scientific visual-
ization, and immersive and collaborative environments.

Several aspects of the parallel decoding can be further
studied and improved. First, each of our graphics card drives

Stream Config num of 
nodes

Frame 
Rate (fps)

Pixel Rate 
(Mpps)

1 1-(1,1) 2 97.8 33.8
2 1-(1,1) 2 105.0 36.3
3 1-(1,1) 2 99.8 34.5
4 1-(2,1) 3 102.1 76.6
5 1-(2,1) 3 94.6 87.2
6 1-(2,1) 3 87.4 80.5
7 1-(2,1) 3 89.2 82.2
8 1-(2,1) 3 90.7 83.6
9 1-(2,1) 3 105.0 96.8

10 1-2-(2,2) 7 88.8 184
11 1-2-(2,2) 7 74.0 154
12 1-2-(3,2) 9 60.2 181
13 1-2-(3,2) 9 45.3 188
14 1-3-(3,3) 13 43.0 268
15 1-3-(4,3) 16 38.9 323
16 1-4-(4,4) 21 38.9 418
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a single projector. It would be useful to experiment with
graphics cards that can drive multiple displays to further eval-
uate the performance.

Second, the decoding system currently balances work-
loads statically. We expect that a dynamic load-balancing
method can help the splitter distribute work more evenly to
fully utilize the decoders.

Finally, the configuration of the system is currently chosen
empirically for each sequence to maximize the performance.
This is an trial and error process. We could make the root
splitter automatically choose the number of splitters when a
target frame rate is given. Together with dynamic loading bal-
ancing, this can make the system more flexible.
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