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ABSTRACT

Effective visualization of vector fields relies on the ability to con-
trol the size and density of the underlying mapping to visual cues
used to represent the field. In this paper we introduce the use of a
reaction-diffusion model, already well known for its ability to form
irregular spatio-temporal patters, to control the size, density, and
placement of the vector field representation. We demonstrate that it
is possible to encode vector field information (orientation and mag-
nitude) into the parameters governing a reaction-diffusion model to
form a spot pattern with the correct orientation, size, and density,
creating an effective visualization. To encode direction we texture
the spots using a light to dark fading texture. We also show that it
is possible to use the reaction-diffusion model to visualize an addi-
tional scalar value, such as the uncertainty in the orientation of the
vector field.

An additional benefit of the reaction-diffusion visualization tech-
nique arises from its automatic density distribution. This benefit
suggests using the technique to augment other vector visualiza-
tion techniques. We demonstrate this utility by augmenting a LIC
visualization with a reaction-diffusion visualization. Finally, the
reaction-diffusion visualization method provides a technique that
can be used for streamline and glyph placement.

Keywords: Vector Field Visualization, Flow Visualization,
Reaction-Diffusion, Vector Fields

1 INTRODUCTION

Visualizing vector fields is important for many computational ap-
plications, including fluid dynamics, wind and water currents in
climate modeling, bioelectric fields in neuroscience, and magnetic
fields in nuclear fusion. To meet the needs arising from this diverse
set of applications, many different techniques for visualizing vector
fields have been developed [1, 3, 7, 8, 19, 22, 31, 33, 30]. Each
technique has strengths and weaknesses in its ability to represent
the magnitude, orientation, direction, uncertainty and topological
structures of the associated vector field.

For instance, the simplest method for displaying a vector field is
to place glyphs representing the vector direction and magnitude at
regular intervals. However, because of scaling differences, overlap
between the glyphs can occur. This can produce visual clutter and
occlusion [25]. The problem is further compounded when data are
displayed in three dimensions. Displaying normalized vector val-
ues can reduce the clutter but at a loss of information. Even when
the visual clutter can be overcome, displaying vector fields using
regular intervals may not be appropriate. This is because the grid
spacing may not correspond to the underlying vector field.

More complicated techniques, such as streamlines, can provide
powerful visual cues [10]. However, enough streamlines must be
placed to provide cues without causing visual clutter. Streamlines
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may be placed selectively to reduce the clutter, but such selective
placement may cause critical areas to be missed [28].

With the exception of a glyph-based method, no technique is sin-
gularly able to visualize uncertainty in vector fields. In [17] Pang
et al. demonstrated several different glyphs for characterizing un-
certainty in vector fields. However, as a glyph based method it can
also succumbs to clutter and occlusion.

Given the various shortcomings in many of the current vector
field visualization techniques, the main goal of this work was to
develop an automated method that uses the vector magnitude, ori-
entation, direction, and uncertainty to control the shape, size, ori-
entation, direction, and density of the objects used to represent the
vector field. At the same time, we wanted a method that would be
mesh independent and produce a visualization that would be natural
and pleasing to the eye. To achieve these goals, we have explored
the use of a reaction-diffusion model for vector field visualization.

2 BACKGROUND AND PREVIOUS WORK

Because of its importance to scientific computing applications, cre-
ating effective techniques for visualizing vector fields is an active
area of research. Given the large number of techniques that have
been developed, it is not practical to review each technique; a very
complete review can be found in [18]. Instead, we focus on three re-
lated areas for visualizing vector fields: the use of random patterns,
selective placement, and reaction-diffusion.

The use of random patterns for visualizing a vector field has been
explored by van Wijk [29], Cabral and Leedom [3], Shen et al. [23],
and others using either spot or white noise to form a dense repre-
sentation of the vector field by integrating an ODE that represents
the basis for a streamline. By dense, we mean that there is value
for each grid location. Others, such as Preußer, [20] have formu-
lated the problem as a PDE describing nonlinear anisotropic diffu-
sion. With the ODE and PDE formulations the resulting image has
a brush-stroke appearance of variable thickness. While this type of
image is useful for showing the vector orientation, it fails to pro-
vide information about magnitude and direction. These shortcom-
ings have been addressed in various forms by adding directional
[23, 30] and magnitude [5, 13] cues.

More recent work has focused on creating images that are less
dense, but still contain useful information about the vector field,
e.g. [12, 24, 28]. Turk and Banks [28] explored a method to bundle
similar streamlines until an energy function is minimized. Once the
function is minimized, the streamlines can be replaced with variable
sized curved arrows to show direction and magnitude. Kirby et al.
[12], were able to achieve similar results using a random placement
of variable sized arrows. Once an arrow is placed, a Poisson distri-
bution disk based on the vector magnitude is used to prevent other
arrows from being placed near it. However, because the arrow rep-
resents just the value at a single location rather than representing
the values in a neighborhood of the sample, it is possible to create
the illusion that an area is homogeneous when it is not.

Computer graphics applications have also made use of a
reaction-diffusion model to generate texture maps [27, 32]. These
types of textures are useful for forming patterns that are natural
looking and are typically applied to organic models such as ani-



mals. Turk explored the use of different reaction models to produce
a variety of patterns [27]. At the same time, Witkin and Kass [32]
used anisotropic diffusion to form different patterns. These patterns
can be classified as either spot or stripe patterns.

Rather than forming the texture and then applying it to a model
using a traditional texture mapping, Turk exploited the fact that a
reaction-diffusion model can be used on an irregular grid. This
allowed him to create textures directly on a tessellated surface,
avoiding any warping between model space and parameter space.
It is possible to make use of this same property to texture isosur-
faces, which is a very common visualization tool. In a similar vein,
Chambers and Rockwood [4] employed a reaction-diffusion model
to generate a solid texture, which is used on a surface and on a vol-
ume. Like Witkin and Kass, Chambers and Rockwood also used an
anisotropic diffusion technique to form stripe patterns.

Although the reaction-diffusion model was initially mentioned
by Cabral and Leedom as a possible model for visualizing data [3],
the first researchers to use the method were Kindlmann et al.[11].
They created a solid texture using a reaction-diffusion model based
on tensor values from diffusion-weighted magnetic resonance im-
ages. This anisotropy formed elliptical “blobs,” which were then
volume rendered. Our approach is similar in that we also use a ten-
sor but rather than having tensor data supplied we create the tensor
from vector data. This gives several additional degrees of freedom
that can be used to encode additional data.

Perhaps the most closely related work is that of Garcke et al. [6]
were they use the vector field to define the amount anisotropy in
the diffusion. Further, they are able to incorporate a shaped particle
to show direction as well as orientation. They use both methods to
create visualizations of clustered vector fields.

We now present a more detailed look at reaction-diffusion, and
describe how it can be used to visualize vector field data.

3 REACTION DIFFUSION

In 1952 Turing [26] proposed a reaction-diffusion model for de-
scribing the chemical process between two morphogens within a
series of cells. Due to the dynamics of the system, the morphogens
both react and diffuse which changes their concentration within
each cell. With time, the morphogens may form a stable pattern
representing the dynamic equilibrium of the system. The pattern
formation is not dependent on the initial state of the system; the
dynamics of the system drives the concentrations toward an equi-
librium state.

Turing described the reaction-diffusion of a two morphogen
model as a set of nonlinear partial differential equations:

∂a
∂ t

= F(a,b)+da∇2a (1)

∂b
∂ t

= G(a,b)+db∇2b (2)

where a and b are the morphogen concentrations; F and G are the
functions controlling the production rate of a and b, respectively; da
and db are the diffusion rates, and ∇2a and ∇2b are the Laplacians
of a and b, respectively. Turing further defined F and G as:

F(a,b) = s(α −ab) (3)

G(a,b) = s(ab−b−β ) (4)

where a and b again are the morphogen concentrations, α and β are
the formation and degradation rates of a and b respectively, and s is
the reaction rate.

For the state to change, there must be some perturbation in the
initial conditions which is a stable solution. This perturbation can

arise from a non-uniformity in either the initial concentrations, a
and b, or the formation and degradation rates, α and β . A nonuni-
form formation and degradation rate can be interpreted as being the
natural variation within each cell.

After the system is put into motion, the morphogen concentra-
tions will change until a dynamic equilibrium is reached and thus
a stable pattern is formed. Although the pattern is stable, the mor-
phogen concentration in each cell will continue to change. How-
ever, the change is statistically very small.

Turing’s equations are just one specific instance of reaction-
diffusion phenomena. Other similar variations can be found in the
literature, including those in [16]. In this paper, we have focused on
the use of Turing’s model because it provides results that are indica-
tive of reaction-diffusion in general. We note that the techniques
provided in this paper can be similarly applied to other reaction-
diffusion systems.

3.1 Mapping the Reaction-Diffusion Kinetics

In order to use a reaction-diffusion model for visualization, a map-
ping must be established between the vector field and the reaction-
diffusion model. There are three possibilities: a mapping between
the vector field and the reaction kinetics, a mapping between the
vector field and the diffusion kinetics, or a combination of both. Be-
cause of the instabilities associated with a reaction-diffusion model,
we have focused on finding a mapping for the vector magnitude to
the reaction kinetics and the vector orientation to the diffusion ki-
netics.

3.2 Reaction Kinetics

Within Turing’s reaction kinetics there are several free variables.
We first mapped the patterns formed as a function of the two re-
action values, α and β . The patterns formed can be described as
being finger print or spot patterns. However, these formed only in-
side a very narrow band of values for α and β . On either side of
this band a stable pattern did not occur. For this work we chose α
and β to be 16±1% and 12±1% respectively, which produced spot
like patterns.

The other free parameter in the reaction kinetics is the reaction
rate s. Changing the reaction rate changes the size of the pattern
formed. This provides an ideal mapping to a scalar value such as the
vector magnitude. Thus, it is possible to create patterns of varying
size with the size directly relating to the vector magnitude.

It should be noted that similar results can be obtained by varying
the diffusion rates da and db. As such, it is neither the reaction
nor the diffusion rates that changes the size, but rather their relative
difference. For simplicity and clarity, we vary only the reaction rate
for each cell.

3.3 Diffusion Kinetics

The diffusion kinetics as written in Equations (1) and (2) have one
free parameter per equation, the diffusion rates da and db. As pre-
viously noted, changing the diffusion rate changes the size of the
pattern formed, and for our purposes it is fixed. However, this is
not the only free parameter in the diffusion equation. If we relax
the isotropic diffusion condition and use anisotropic diffusion we
are able to create a broader range of patterns. Assuming anisotropy,
the reaction-diffusion equation can be generalized as:

∂u
∂ t

= H(u,v)+(∇ ·σu∇)u, (5)

where σu is a symmetric positive definite diffusion tensor into
which we will encode the vector field of interest.



Assume that we are working on a finite domain [a1,b1] ×

[a2,b2] ∈ R2, and that we are given a regularly-spaced computa-
tional grid of size Nx ×Ny. At each point (xi,y j), i = 1, . . . ,Nx, j =

1, . . . ,Ny suppose that we are given a vector ~vi j = (ui j,vi j)
T . To

embed this vector field into a tensor field, define θi j = arctan
vi j
ui j

∈

[0,2π].
We can now define a rotation matrix and its inverse based upon

the angle determined above:

Ri j =

(

cosθi j sinθi j
−sinθi j cosθi j

)

(6)

R−1
i j = RT

i j =

(

cosθi j −sinθi j
sinθi j cosθi j

)

(7)

We now define a principal diffusivity matrix Λ which is a di-
agonal matrix and gives the diffusivity coefficients along the two
principal axes of diffusion:

Λi j =

(

(λ1)i j 0
0 (λ2)i j

)

(8)

where (λ1)i j is the diffusivity in the first principal direction and
(λ2)i j is the diffusivity in the second principal direction.

With the definitions above we can define a diffusivity tensor σij
based on our vector field as

σij = RT
i jΛi jRi j. (9)

We then combine the spatially nonuniform anisotropic diffusion
matrix with a discrete finite difference Laplacian as outlined in [9]
in a manner that maintains second-order convergence. With this
control, we now have our desired mapping between the vector ori-
entation and the diffusion kinetics. Witkin and Kass [32] took a
similar approach for creating 2D texture patterns but assumed a spa-
tially uniform anisotropic diffusion matrix.

3.4 Directional Texturing

The final step in the mapping process is to encode directional infor-
mation in the pattern created. Up to this point we have described the
use of a reaction-diffusion model for generating non-specific pat-
terns. The most common pattern formed using a reaction-diffusion
model is a spot pattern. The exact formation of the spot pattern will
be discussed in the following section. Assuming an oriented ellip-
tical spot pattern, we show the direction by texturing the spots with
a contrasting light to dark fading texture. The texturing is local for
each spot using the following steps:

Step 1: Assuming dark spots on a light background, normalize
the image values to be between 0 and 255.

Step 2: Find the centroid of each spot by first thresholding to
remove all pixels with a value greater than 64. Second, thin the
remaining pixels to into single pixels [21]. Label the remaining
single pixels as the centroid.

Step 3: For each centroid find all connected pixels with a value
less than 128.

Step 4: For each connected pixel, calculate the dot product be-
tween the vector form by the centroid and the connected pixel and
the underlying vector field value at the centroid.

Step 5: Normalize the dot product to be between 0 and 1 based
on the minimum and maximum dot product values within the spot.

Step 6. If the normalized dot product is less than .9, interpolate
between the minimum and maximum gray scales in the spot. This
becomes the new gray scale value that gives the dark to light fad-
ing on the spot. Otherwise the gray scale is set to be 255, which
produces a contrasting light tip on the spot.

The texturing does not change the size or orientation of the spots;
merely highlights the direction using values that maintain their nat-
ural appearance in the image. A light to dark fading provides di-
rectional cues because the fading has a natural strong to weak as-
sociation. Wegenkittl et al. [30], took a similar approach to create
oriented streamlines. The texturing is fully demonstrated in the fol-
lowing section.

4 IMAGE FORMATION

A reaction-diffusion image is created using a forward Euler inte-
gration on the discrete version of Equation (5) for a and b until a
dynamic equilibrium state is reached, at which time, a stable pattern
will have formed. We have found that using a cell size of 1.0 and a
step size of 0.5 provides a balance between numerical stability and
the pattern formation.

Figure (1a) shows a spot pattern created with the Turing model.
Analysis of the image shows that the spot placement is balanced.
That is, there is a uniform density of spots with equal spacing
around them. This balancing process can be observed during the
integration process when a spot begins to form in an area of lower
concentration. Other nearby spots adjust themselves so they are
not too close to the newly formed spot. Sometimes this adjustment
may come in the form of a change in the position of the spots or
when one or more of the spots disappears and its concentration is
absorbed by remaining spots. This natural organization is one of
the properties of reaction-diffusion equations that makes them very
useful for visualization purposes.

Circular spots alone do not show magnitude, orientation, or di-
rection. As discussed previously, to show magnitude we scale the
spots using the reaction rate, s to reflect the vector magnitude, Fig-
ure (1b). To show orientation we compress the spots into elliptical
shapes by applying an anisotropic diffusion matrix where the values
along the principal axis have a 3:1 ratio. Next, we rotate the diffu-
sion matrix for each vector so that the ellipse’s major axis is aligned
with the vector field. Once the system comes to a dynamic equilib-
rium and the spots have formed, the light to dark texture is applied
to each spot to show direction, Figure (2a). Figure (2b) shows the
magnitude, orientation, and direction combined.

Figure 1: (a) Reaction-Diffusion visualization of circular spots of constant
size and (b) variable size.

We now show the application of our reaction-diffusion model
to visualize a set of idealized vector fields. Our goal was to see
if it was possible to capture the nature of different types of vector
fields. These fields include the electric field from a dipole and an
electrostatic charge, Figure (3); and a vector field for a saddle and a
sink, Figure (4). In each vector field the magnitude and orientation
changes smoothly. The properties of vector field can easily be dis-
cerned as the ellipsoidal spots have the correct size and orientation.
In the case of the circular, saddle, and sink vector fields, a change
in the vector magnitude occurs as the vector field moves away from
the center and is shown by a corresponding change in the spot size.
However, in Figures (2-4), the images have several spots that did



Figure 2: (a) Reaction-Diffusion visualization of a circular vector field
showing orientation and direction and (b) magnitude, orientation, and di-
rection.

not form very well, appearing to be smeared together. This is at-
tributable to the variance of the formation and degradation factors,
α and β which need to have enough variance to perturb the system
but not so much as to cause irregularities in the patterns.

Figure 3: (a) Reaction-Diffusion visualization the electric field from a
dipole and (b) an electrostatic charge.

Figure 4: (a) Reaction-Diffusion visualization of a saddle vector field and
(b) a sink vector field.

One of the unique features of using a reaction-diffusion model
with anisotropic diffusion as we have done is that the spot, although
appearing random, naturally align themselves into pseudo stream-
lines. Further, when the vector field is curved, the spots are not
perfectly elliptical, but rather a bean-like shape. This is due to the
spatially nonuniform anisotropy influencing the overall spot shape.
Another feature of the reaction-diffusion model is that, due to the
diffusion, faint streaks emanate from the ends of the spots. These
streaks act to connect the spots, further aiding in visualizing the
vector field.

This aligning, bending, and streaking all give the observer cues
to the underlying vector field. But critical areas may also be of
interest. This is another area where the reaction-diffusion model
gives visual cues. For instance, at locations where the vector field is
diverging, the spots are no longer elliptical but assume odd shapes.
If the vector field is diverging equally in all directions the spots will
be circular. As such, oddly shaped or circular spots could indicate,

critical areas, or as will be demonstrated in the next section, the
location of a large uncertainty in orientation. These are locations
the observer may want to inspect further. For instance, in Figures
(2-4) the spots are elliptical and are aligned with the vector field
throughout the image except at the critical areas.

We have shown that it is possible to view different vector fields
using a reaction-diffusion model. However, when implementing the
reaction-diffusion method, a question regarding resolution arises:
what is the minimum resolution required for individual features to
be seen? By its nature, the process of diffusion acts to smooth,
lowering high concentrations and raising low concentrations. As
such, it is possible to lose individual features that are significantly
different than their neighbors.

To determine the minimum resolution at which features can be
seen, we oversampled a vector field until it was possible to see the
impact of a single vector that was significantly different in both
magnitude and orientation than its surrounding, otherwise constant
neighbors. This is demonstrated in Figures (5) and (6) for both mag-
nitude and orientation, respectively. It is not until there is an over-
sampling of eight times the original sample that the magnitude will
significantly impact its neighbors to be visually noticeable. Simi-
larly, it takes an oversampling of eight times for the angle to im-
pact its neighbors. Unfortunately, for large vector fields, oversam-
pling is not always practical because it may require significantly
more computational time. As such, when visualizing a vector field
without oversampling features less than eight nodes in size may be
smoothed out.

Figure 5: Effect of a single value on the spot size with an oversampling of
0, 1, 2, 4, 8, 16, 32, and 64 times.

Figure 6: Effect of a single value on the spot orientation with an oversam-
pling of 0, 1, 2, 4, 8, 16, 32, and 64 times.

4.1 Uncertainty Measurements

In the previous examples, we have fixed the amount of anisotropy
in the diffusion matrix. However, this is not necessary. If we allow
the anisotropy to vary, we can map and visually represent another
variable. In this case, we define the amount of anisotropy to be the
ratio of the values along the principal axes in the diffusion matrix.
When the amount of anisotropy is small, the spot formed is circular.
Where when the anisotropy is high, the spot formed is elliptical, at



times, almost to the point of being a thick line. This difference is
very well suited to mapping an orientation uncertainty. When the
orientation uncertainty is very small the spot maintains its ellipti-
cal shape, reflecting a precise orientation. When the uncertainty is
very high, the spot is more circular, reflecting the uncertainty in the
orientation. In the previous examples, the ratio of the values along
the principal axes in the diffusion tensor was fixed at 3:1. We now
allow it to vary between 5:3 and 7:1. This is demonstrated in Fig-
ure (7) where the uncertainty is a function of the angular position.
In a subsequent example, instead of encoding the uncertainty, we
encode the vorticity of the vector field,

ωi j = (∇×ui j), (10)

which can be visualized as a scalar in 2D.

Figure 7: Reaction-Diffusion visualization of orientation uncertainty. The
orientation uncertainty is a function of the angular position.

4.2 Augmentation and Automatic Streamline/Glyph Place-
ment

Figure (8) shows our reaction-diffusion model for visualizing an
idealized vector field that contains three saddles and two vortexes.
To augment the LIC image we have taken Kirby et al.’s [12]
painter’s approach by using a LIC image as an undercoat with the
reaction-diffusion as the topcoat. In addition to the trending pattern
formed by the spots, the brush stroke appearance from the LIC im-
age enhances the ability of the observer to follow the vector field,
while the spots provide magnitude and direction.

Figure 8: Reaction-Diffusion visualization of multiple vector fields using
an underlying LIC image as a base coat.

One of the features of using a reaction-diffusion model is that it
also provides a mechanism for automatic streamline or glyph place-
ment. By finding the centroid of each spot using standard image
processing techniques [21], it can serve as a seed point for placing a
streamline, Figure (9) or a glyph, Figure (10). Although there is one
streamline per spot in Figure (9), there appears to be fewer stream-
lines because of the their alignment and slight overlap. Because
the density of the spots is based on the magnitude of the underly-
ing vector field in Figure (10) it was possible to scale the arrow
glyphs to reflect the vector magnitude without causing occlusion.
Further, because of the density relationship, the number of glyphs
also reflects, albeit inversely, the magnitude of the vector field. If
a uniform density is desired then all that needs to be done is to
run the reaction-diffusion using a constant magnitude term which
would then determine the density.

Figure 9: Automatic streamline placement based on the spot centroids in
Figure (8).

Figure 10: Automatic arrow glyphs placement based on the spot centroids
in Figure (8).



5 RESULTS AND DISCUSSION

We now apply our reaction-diffusion model to a numerical simula-
tion of the nonlinear magneto-hydrodynamics (MHD) that occur in
the DIII-D tokamak nuclear fusion reactor. The vector field shown
in Figures (11-13) is a reoriented two-dimensional slice of the mag-
netic field in the Tokamak reactor. In Figure (11), just the magni-
tude and vorticity of the vector field is visualized with no orienta-
tion information. The greater the vorticity, the more symmetric the
spots become. This gives a good example of how this technique can
be used for visualizing two scalar values. Figure (12) is the same
vector field showing the orientation and direction. Finally, in Fig-
ure (13), the vector field is shown with magnitude, orientation, and
direction. In Figure (14), we have encoded the magnitude, orienta-
tion, direction, and vorticity of the vector field. Although the spots
in Figure (14) appear in different locations than in Figure (13) a
comparison of the two images shows a significant difference in the
spot shape in those areas with high vorticity.

Figure 11: Reaction-Diffusion visualization of a MHD Magnetic vector
field. Magnitude and Vorticity are shown.

Figure 12: Reaction-Diffusion visualization of a MHD Magnetic vector
field. Orientation and direction are shown.

Figure 13: Reaction-Diffusion visualization of a MHD Magnetic vector
field. Magnitude, orientation, and direction are shown.

Figure 14: Reaction-Diffusion visualization of a MHD Magnetic vector
field. Magnitude, orientation, direction, and vorticity are shown.

5.1 Relationship to Other Vector Field Visualization Tech-
niques

It is also possible to set the reaction rate to zero and use just the
diffusion tensor to create other types of visualizations. To produce
a LIC-like image, we change the diffusion tensor to be 1D, Figure
(15a). To produce convective patterns, such as those proposed by
Preußer [20], we use a highly anisotropic 2D diffusion tensor, Fig-
ure (15b). This shows that the diffusion model used is consistent
with previously published results.

Figure 15: (a) Visualization with a LIC like appearance and (b) with a
convective patterns using just the diffusion kinetics.

5.2 Comparison with Other Vector Field Visualization Tech-
niques

We now compare the reaction-diffusion images with four differ-
ent vector field visualization techniques. Figure (16) shows vector
glyphs at regular intervals [25], Figure (17) shows oriented ellipses
based on a Poisson distribution [12], Figure (18) shows a line inte-
gral convolution [3], and Figure (19) shows image guided stream-
lines [28]

Placing glyphs at regular intervals is much simpler and quicker
than using a reaction-diffusion model, but, as previously discussed,
occlusion can be a problem. Using a random Poisson distribution
solves the occlusion problem but fails to provide any organization,
which is often a key to producing an effective visualization. Using a
reaction-diffusion model overcomes the occlusion problem because
the spots have a density that is based upon the vector magnitude.
Another problem with regular and random intervals is that they may
mislead the eye by forming a pattern that may not be part of actual
vector field. Conversely, the reaction-diffusion model forms spots
in a pattern that follows the underlying structure of the field.

When comparing the reaction-diffusion method to LIC, we can
see that both techniques visualize the vector field in a manner that
is natural and easy to observe by producing a dense image repre-
sentation of the vector field field. With reaction-diffusion images,
different reaction rates produce spots at different densities. The less
dense the spots, the greater the chance that areas of interest may



be missed. However, images with a high density of spots may be
difficult to view because of the Moray patterns that can form. As
such, the density of the spots is a critical component for an effec-
tive reaction-diffusion vector field visualization. Currently, the only
way to control the density is by using different reaction rates. How-
ever, we are also investigating different reaction-diffusion models,
such as the Gray-Scott model.

Unlike traditional LIC images, which do not contain magnitude
or direction information, the reaction-diffusion model is able to nat-
urally incorporate this information into the visualization. Including
the magnitude and direction greatly enhances the visualization. LIC
images, along with other noise-based techniques, can be extended
to show the magnitude, but these techniques do so at a loss of vec-
tor field detail because of blurring used to emphasize the magnitude
[5, 13].

Next, we compare the reaction-diffusion image to a visualization
using the image-guided streamline technique developed by Turk
and Banks [28]. Both techniques are similar in that both are able to
show magnitude, orientation, and direction. However, the reaction-
diffusion technique represents magnitude more intuitively than the
image guided technique. This is because instead of using length to
represent magnitude the reaction-diffusion technique uses a width,
which is more intuitive.

Figure 16: Uniform sampled vector glyph image of the vector field used in
Figure (11).

Figure 17: Randomly placed ellipse image of the vector field used in Figure
(11).

Figure 18: LIC image of the vector field used in Figure (11).

Figure 19: Image guided streamlines generated by Turk and Bank’s algo-
rithm of the vector field used in Figure (11).

One of the drawbacks of using a reaction-diffusion model com-
pared to the other techniques is the computational expense. Using
an explicit formulation, the patterns take 15-25k iterations to form
and become stable. Using a GPU implementation based on Lefohn
et al. [15] this takes less than a minute. Whereas it is possible to
produce LIC images at interactive rates [2]. We are currently inves-
tigating GPU based multi-grid and implicit integration techniques,
which should reduce the computational expense.

An additional problem that can occur during pattern formation
is that spots can form and fail to separate, as shown in Figure (3a).
Where this happens is random and appears to be dependent on the
initial conditions. We have observed that it tends to happen more
frequently with smaller spots.

One of the greatest benefits of using a reaction-diffusion model is
the ability to seamlessly integrate uncertainty measurements in the
model. None of the other techniques, with the exception of vector
glyphs, are able to show uncertainty as part of their representation
[17]. Although vector glyphs can show uncertainty, occlusion re-
mains a problem in their use.

An additional benefit is that the reaction-diffusion technique can
be used alone or to augment other techniques. Furthermore, it is
possible to use the centroids of the spots to provide a set of seed
points for placing streamlines and scaled glyphs.

6 CONCLUSIONS AND FUTURE WORK

We have introduced the use of a reaction-diffusion model that can
produce patterns with different shapes, sizes, orientations, and di-
rections for visualizing vector fields. We are able to control the
pattern formation by mapping two of the vector field components,
orientation and magnitude, to the diffusion and reaction kinetics, re-
spectively. In addition, we also can map an orientation uncertainty
to the diffusion kinetics. This mapping produces a spot pattern that
is highly representative of the underlying vector field. To show di-
rection we have applied a light to dark fading texture to each spot.

The principle advantage of the reaction-diffusion model over ex-
isting vector field visualization techniques is that the pattern size
and density that naturally arises from the reaction-diffusion model
accurately represents the underlying vector field. Further, the shape
of the pattern (e.g. the spots) not only contains information con-
cerning magnitude, orientation, and direction but also may contain
other information, such as uncertainty or vorticity.

We have also demonstrated the use of the reaction-diffusion
model for the automatic placement of streamlines or glyphs and
shown how it can be augment other techniques. Although we have
not used color to highlight certain features, one could easily incor-
porate color to further enhance the visual attributes.

Future work includes extension of the reaction-diffusion algo-
rithm to three dimensions. In such an extension, the reaction kinet-
ics remain the same; only the diffusion kinetics must be extended.
The output is a three-dimensional texture that can be volume ren-



dered using various techniques or may be applied to two dimen-
sional surfaces. The image generated would have similar charac-
teristics to those generated by Kindlmann and Weinstein [11] and
Chambers and Rockwood [4] and unfortunately suffer from the
same visualization problems.

Finally, there are a number of perceptual issues that require fur-
ther investigation, including a formal user study such as the one
performed by Laidlaw et. al. [14] to determine the effectiveness
of the reaction-diffusion visualization technique in comparison to
other vector field visualization techniques. One area of particular
interest is quantifying the effectiveness of the natural patterns that
form from using a reaction-diffusion model.
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8 APPENDIX

One of the difficulties in using a reaction-diffusion model is the in-
herent instability of the system. Below are the parameters used to
obtain the stable pattern shown in Figure (1a), which are applied to
Eqs. (1-4) using a discrete central difference Laplacian on a uni-
form grid.
a = 4.0
b = 4.0
Da = 1.0 / 4.0
Db = 1.0 / 16.0
α = 16.0 ±1%
β = 12.0 ±1%
s = 1.0 / 64.0
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