
IEEE Visualization (Vis2002), October 2002
Scalable Alignment of Large-Format Multi-Projector Displays
 Using Camera Homography Trees

Han Chen * Rahul Sukthankar † Grant Wallace * Kai Li *
Computer Science HP Labs (CRL) and Computer Science Computer Science

Princeton University The Robotics Institute, CMU Princeton University Princeton University

Abstract* †

This paper presents a vision-based geometric alignment system for
aligning the projectors in an arbitrarily large display wall. Existing
algorithms typically rely on a single camera view and degrade in
accuracy1 as the display resolution exceeds the camera resolution
by several orders of magnitude. Naïve approaches to integrating
multiple zoomed camera views fail since small errors in aligning
adjacent views propagate quickly over the display surface to create
glaring discontinuities. Our algorithm builds and refines a camera
homography2 tree to automatically register any number of uncali-
brated camera images; the resulting system is both faster and sig-
nificantly more accurate than competing approaches, reliably
achieving alignment errors of 0.55 pixels on a 24-projector display
in under 9 minutes. Detailed experiments compare our system to
two recent display wall alignment algorithms, both on our
18 Megapixel display wall and in simulation. These results indi-
cate that our approach achieves sub-pixel accuracy even on dis-
plays with hundreds of projectors. 陈

CR Categories and Subject Descriptors: I.3.3 [Computer Graph-
ics]: Picture/Image Generation – Digitizing and scanning, Display
algorithms, Viewing algorithms; I.4.1 [Image Processing and
Computer Vision]: Digitization and Image Capture – Imaging
geometry, Camera calibration; B.4.2 [Input/Output and Data Com-
munications]: Input/Output Devices – Image display.

Additional Keywords: large-format tiled projection display, dis-
play wall, camera-projector systems, camera-based registration and
calibration, automatic alignment, scalability, simulation, evaluation.

1. INTRODUCTION
Large format high-resolution display devices are becoming
increasingly important for scientific visualization, industrial
design and entertainment applications. A popular approach to
building such displays is the projector array [7][4], where several
commercially-available projectors are tiled to create a seamless,
high-resolution display surface, (see Figure 1).
The projectors in the array require precise geometric alignment to
prevent artifacts in the final display. This is typically done by man-
ually aligning the projectors. Unfortunately, the process is labor-
intensive and time-consuming; furthermore, the display wall
requires frequent re-alignment since the projectors shift slightly
due to vibration and thermal flexing in the mounts. Given the
increasing demand for large format display walls, alignment solu-
tions must scale well to multi-projector arrays of arbitrary size.

Figure 1. The Princeton Scalable Display Wall is an display
with an effective resolution of pixels. This behind-the-
scene photograph shows the array of 24 microportable projectors.

Recent advances in commodity graphics hardware have made it
possible to pre-warp imagery in real time to correct misalignment
in a tiled display wall. This enables software based solutions for
multi-projector display alignment without compromising image
quality. Several ideas for camera-based automation of projector
array alignment have recently been proposed. Surati [11] builds
lookup tables that map pixels from each projector to points on the
display surface; this is done by physically attaching a calibration
grid (printed by a high-precision plotter) onto the surface. While
this approach is adequate for a array of projectors, it scales
poorly for larger displays since creating and accurately mounting
an absolute measurement grid onto the display surface is infeasi-
ble. The PixelFlex system [13] uses a single, wide field-of-view
camera in conjunction with structured light patterns from each pro-
jector to determine camera-projector homographies, enabling auto-
matic alignment of a reconfigurable display wall. These methods
assume that the entire display surface is small enough to be com-
pletely visible in one camera’s field of view. As display walls
become larger, capturing a single camera image of the entire dis-
play surface becomes increasingly impractical: a single pixel in the
camera maps to unacceptably large areas on the display surface
once the display wall grows beyond a certain size.
This motivates approaches that can integrate information about the
projector geometry from a set of camera images, each of which
observe only a small portion of the display surface. Raskar et
al. [8] employ two calibrated cameras in conjunction with pro-
jected patterns to recover the 3-D model of a possibly non-planar
projection surface. The need to calibrate camera views to the sys-
tem makes this approach difficult to scale. Chen et al. [3] use a
pan-tilt-zoom camera to observe the individual overlap regions in
the projector array. Information about local discontinuities, e.g.
point-matches and line-matches across the seam, is acquired using
an iterative process, and a large global optimization problem is
constructed using this data. Simulated annealing is used to find the
pre-warps that minimize discontinuity errors. The primary advan-

*{chenhan, gwallace, li}@cs.princeton.edu
†rahuls@cs.cmu.edu
1Throughout the paper “accuracy” is intended to mean “local registration
accuracy” unless otherwise stated.
2We use homography synonymously with collineation: a planar transfor-
mation which maintains collinear points.

18' 8'×
6000 3000×

2 2×

tage of their algorithm (referred to as SimAnneal in the remainder
of this paper) is that, in principle, it scales well to large display
walls since the uncalibrated camera can easily scan the overlap
regions. However, simulated annealing converges slowly, particu-
larly in high-dimensional parameter spaces. Furthermore, unless
the initial manual alignment between projectors is good, the opti-
mization algorithm can converge to an incorrect solution.
This paper presents a scalable approach to display wall alignment
that is both more accurate and faster than existing approaches. It is
motivated by the single-projector keystone correction system
described in [10], adapted to employ images taken from multiple,
uncalibrated camera views. Our approach efficiently scales to pro-
jector arrays of arbitrary size without sacrificing alignment accu-
racy. The experiments described in this paper were performed on
an , 24-projector display with an effective resolution of

 pixels (see Figure 1).
The remainder of this paper is organized as follows. Section 2
details the camera homography tree algorithm for automatic dis-
play wall alignment. Section 3 describes our evaluation methodol-
ogy, presents our approach for automatic measurement of
alignment errors, and presents a simulator (validated on real data)
that enables scalability experiments on very large format display
walls. Section 4 presents experimental results investigating the
accuracy, scalability and running time of our algorithm and com-
paring the approach to two recent systems, SimAnneal [3] and
PixelFlex [13]. Section 5 summarizes the paper’s contributions.

2. DISPLAY WALL ALIGNMENT
Our display wall setup consists of 24 projectors, a cluster of work-
stations and a pan-tilt-zoom video camera. The Compaq MP-1800
microportable XGA-resolution DLP projectors are arranged in a
6 wide by 4 high array behind a rear-projection screen, as shown in
Figure 1. The projectors are mounted so that their display regions
cover an region, generating an effective resolution of
approximately 18 Megapixels. The projectors are controlled by a
cluster of commodity PCs connected over a high-speed network.
The pan-tilt-zoom NTSC-resolution camera is mounted on the
ceiling in front of the projection screen.
To make our discussion general, we define the following notations.
The term wall-(H,V) denotes a display wall array with pro-
jectors, arranged in a rectangular grid with projectors horizon-
tally and projectors vertically. Each projector is assumed to
have a resolution of ; thus a wall-(6,4) has an approxi-
mate resolution of . The term, cam- , denotes a set
of camera poses and zoom lens setting, where an subset of
the projector array is completely visible in each camera image.
There are distinct camera
views available as input. For instance, a cam- viewing a wall-
(6,4) observes a set of projectors in each image; one could
pan the camera to four horizontal and two vertical positions to
obtain 8 different views of the display surface, each of which con-
sists of a unique subset of projectors. Note that these views can be
generated either from a single pan-tilt-zoom camera or from
fixed cameras. Our algorithm works with either scenario. We fur-
ther define the term cam-all to represent a single, wide-angle cam-
era view that can see the entire display area at once, i.e. cam-
all = cam- , where . For example, the cam-all
for a wall-(6,4) is cam- .

2.1 Perspective Correction with 2-D Homographies
We assume that: the positions, orientations and optical parameters of
the cameras and projectors are unknown; camera and projector

optics can be modeled by perspective transforms; the projection sur-
face is flat. Thus, the various transforms between screen, cameras,
and projectors can all be modeled as 2-D planar homographies:

where and are corresponding points in two frames of
reference, and (constrained by) are the
parameters specifying the homography. These parameters can be
determined from as few as four point correspondences using stan-
dard methods. We employ the closed-form solution described
in [10]. It is summarized below.
Given feature point matches, , .

Let ,

and compute the eigenvalues of . is given by the eigenvector
corresponding to the smallest eigenvalue.
Our system employs this technique to compute two types of
homographies: camera-to-camera and projector-to-camera. Each is
described in greater detail below, and illustrated in Figure 2.

Figure 2. This diagram shows the relationship between the various
homographies described in the text. Our system’s goal is to recover
the homography () mapping each projector , to the global ref-
erence frame. Although cannot directly be observed, it can be
derived by composing , the homography between that projector
and some camera view, and the chain of homographies connecting
that view to the root of the homography tree. The geometric distor-
tion of projected images is then corrected using a pre-warp of .

First, camera-to-camera homographies capture the relationship
between different camera views of the display surface. Although
each view typically observes only a few projectors, the system
combines these views to generate a reference frame for the entire
display surface (see Section 2.3). Conceptually, this is equivalent
to automatically building a panoramic mosaic from a set of photo-
graphs. One cannot directly compute a homography between two
camera views that do not overlap since they share no point corre-

18' 8'×
6000 3000×

18' 8'×

H V×
H

V
1024 768×

6000 3000× N N×
N N×

nv max H N– 1+ 1,() max V N– 1 1,+()×=
3 3×

3 3×

nv

M M× M max H V,()=
6 6×

xw
yw
w

 h1h2h3

h4h5h6
h7h8h9

 X

Y
1

=

x y,() X Y,()
h h1 … h, 9,()T= h 1=

n xi yi(,) Xi Yi(,){ , } i 1 … n, ,=

A

X1 Y1 1 0 0 0 X1x1– Y1x1– x1–
0 0 0 X1 Y1 1 X1y1– Y1y1– y1–

X2 Y2 1 0 0 0 X2x2– Y2x2– x2–
0 0 0 X2 Y2 1 X2y2– Y2y2– y2–

:· :· :· :· :· :· :· :· :·
Xn Yn 1 0 0 0 Xnxn– Ynxn– xn–
0 0 0 Xn Yn 1 Xnyn– Ynyn– yn–

=

ATA h

Projectors

Display Surface

Camera Views
cami camj

cam1

projk

jPk

iCj

1Ci

RPk

RH1

PR k k
PR k

Pj k

PR k 1–

spondences. Therefore, our system builds a tree of homography
relationships between adjacent views that spans the complete set of
views; the mapping from any given view to the panoramic refer-
ence frame is determined by compounding the homographies
along the path to the reference view at the root of the tree:

where is the homography mapping points from view to the
global reference frame, are homographies connecting adjacent
camera views and maps the root camera view to the global
reference frame.3

Second, the projector-to-camera homographies transform each
projector’s area of projection into some camera’s coordinate sys-
tem. These homographies are determined as follows. Each projec-
tor k displays calibration slides with highly-visible features, whose
locations are known in projector coordinates. By observing the
locations of these features in the camera image j, we can determine
the relevant projector-to-camera homography . Since we know
the mapping between any camera j and the reference frame, this
enables us to compute , the transform from projector k to the
reference frame:

Note that expresses the geometric distortion induced by the
projector’s oblique placement. This distortion is removed by pre-
warping each projector k’s output by .

2.2 Sub-pixel Accuracy Feature Detection
Simple image processing techniques can typically locate features
to the nearest pixel in an input image. However, since a single pixel
in our camera images covers several projected pixels on the display
surface, our application demands more sophisticated methods.
Also, commodity video camera lenses usually exhibit noticeable
distortions, making simple perspective camera models insufficient.
We use the following five-parameter distortion model from [5]:

where , and are the radial distortion coeffi-
cients, and the tangential distortion coefficients. These
distortion parameters can be obtained via standard offline calibra-
tion procedures. We have also developed a method to automati-
cally correct the distortion along with feature extraction.
The feature detection component of our system displays a
sequence of calibration slides on the projectors that are visible in
each camera view. The goal is to reliably identify point features in
adjacent camera views that correspond to the same location on the
physical screen. The standard approach would be to project a sin-
gle known pattern, such as a checkerboard, from each projector
and use the checkerboard’s corners as features. We improve upon
this by projecting pairs of patterns: a set of horizontal lines fol-
lowed by a set of vertical lines. The intersections between these
line sets can be determined with greater accuracy than standard
corner detection. The details are described below.
For each camera view, horizontal lines are first displayed on a pro-
jector. Figure 3a shows an example of the captured image. Next,
vertical lines are displayed on the same projector, as shown in
Figure 3b. Note that these lines are “horizontal” and “vertical” only
in the projector’s own coordinate system. They may not be horizon-
tal or vertical on the display surface nor in the camera image since

the projector and camera orientations may be oblique. Each image
is then processed as follows. We fit a quadratic function to the
intensity values inside every and window in the image. A
strong peak of the function under a window indicates that a line
crosses through the window, and this provides a sub-pixel accuracy
estimate of the line’s local position, shown as blue dots in Figure 3c
and 3d. The output of this procedure is a set of position estimates
with floating-point precision along each visible line.
In the second step, the system determines the line equations that
best fit the observed data in each camera image. Unfortunately, the
observed lines are not precisely straight due to camera lens distor-
tion. This is not easily corrected with offline calibration methods,
because the camera distortion parameters change with zoom set-
tings. This motivates the development of a novel online calibration
method that combines distortion correction with line fitting. We
use the sum of deviations of all points from the fitted line as the
energy function. A non-linear optimizer is used to optimize the
five-parameter distortion model to minimize the energy.
In the third step, the horizontal and vertical lines are intersected.
This creates a set of accurate, stable point features for each camera
view. A typical implementation employs calibration slides with
five vertical and four horizontal lines, resulting in 20 point features
per projector, as shown in Figure 3e. When the cam- configu-
ration is used, features from four projectors are visible in each
camera view, as shown in Figure 3f.

Figure 3. An example of the image processing and feature extrac-
tion procedure of our system.

These features are now used to compute the projector-to-camera
and camera-to-camera homographies shown in Figure 2. Comput-
ing projector-to-camera homographies is straightforward since the
locations of the 20 features are known a priori in the projector’s
coordinate frame. The camera-to-camera homographies are deter-
mined using all of the features that are visible in overlapping cam-
era views. For instance, when the cam- configuration is used,
two common projectors are visible in adjacent camera views; this
means that 40 feature points are available for the camera-to-cam-
era homography calculation. When two camera views share no
common projector, the homography relating them must be
obtained indirectly, using a chain of known homographies, as
described in the following section.

2.3 Camera Homography Trees
To accurately register camera views, we introduce the concept of a
Camera Homography Tree, and an algorithm for optimizing it.
We call a Camera Homography Graph (CHG), where each
vertex in V represents a camera view and an edge in E corresponds
to a directly-computable homography between two views, i.e. an

3The transform ensures that the global frame axes are aligned with the
display surface rather than the root camera view; is computed by
observing four known features on the display surface from any view.

HR j HR 1 C1 i … Ci j×××=
HR j j

Cs t
HR 1

HR 1
HR 1

Pj k

PR k

PR k HR 1 C1 i … Ci j Pj k××××=
PR k

PR k 1–

x' x x k1r2 k2r4 k3r6+ +[] 2p1xy p2 r2 2x2+()+[]+ +=
y' y y k1r2 k2r4 k3r6+ +[] 2p2xy p1 r2 2y2+()+[]+ +=

r2 x2 y2+= k1 k2 k3, ,()
p1 p2,()

9 1× 1 9×

2 2×

a

d

c

b

e

f

2 2×

G V E,()

edge connects two vertices only if they share at least one common
projector. For a rectangular display wall, a CHG usually looks like a
lattice. Figure 4 shows a wall-(6,4) with cam- ; 15 views are
available, forming a lattice. Usually, a horizontal or vertical
edge represents two strongly overlapping views, resulting in a bet-
ter estimate of its homography; whereas a diagonal edge represents
two weakly overlapping views, and thus a poorer estimate.

Figure 4. The Construction and Optimization of a Camera Homogra-
phy Tree for Wall-(6,4) with Cam-2×2 Configuration.

As discussed in Section 2.1, as long as a CHG is connected, the
homography between any two vertices can be computed by com-
pounding a chain of homographies along a path connecting these
two vertices. Ideally, the compound of homographies along any
closed loop in an CHG should be identity; we call this graph a
Consistent CHG. However, due to imperfection in the optics and
limited resolution of the imaging device, this is usually not true;
the result is an Inconsistent CHG. When multiple paths exist
between two vertices, the calculated homography between these
two vertices may depend on the choice of path. Clearly this needs
to be remedied if we want to accurately register all camera views.
Similar problems exist for 2-D image mosaicing. Shum et al. [9]
and Kang et al. [6] have proposed methods for global registration.
Their algorithms work on continuous-tone images, and have to
extract features automatically. As mentioned before, we can detect
features reliably with sub-pixel accuracy; this enables us to
develop a novel algorithm that registers camera views precisely.
By definition, a tree is a connected graph without loops. Therefore,
if a CHG is a tree, it is always consistent. Given a CHG , a
Camera Homography Tree (CHT) is simply a spanning tree

 of G, where . In T, every pair of camera views is
connected by a unique path. Although a CHT is consistent, it tends
to be inaccurate when used directly – error in a single edge affects
all homography paths containing that edge; also, being a subset of
the original graph, only a portion of the feature correspondence
information is utilized. We describe our method of constructing a
initial CHT and optimizing the homographies along its edges to
best represent the original CHG.
The goal of constructing the initial CHT is to minimize the path
length from any vertex to the root, and also to minimize the path
length between any adjacent camera views. To satisfy these crite-

ria, we pick a vertex near the center of a CHG as the root, or refer-
ence view. A fishbone-shape tree is then constructed, with its
“spine” aligned with the long side of the lattice, as shown in
Figure 4. Each edge is initialized with the homography directly
computed from common features visible in both camera views, as
described in Section 2.1.
In the optimization stage, we iteratively refine the edges of a CHT
to better represent the original CHG. In each iteration, the edges
are updated in a bottom-up order. Each edge forms
a cut set of T – when removed, T becomes a forest of two trees:

 and , where , , ,
, and . An example of this is

outlined in Figure 4. The initial homography along the edge
is computed with features from the fourth projectors in the second
and third rows, as shown in a darker shade. To refine this homogra-
phy, we treat and as two CHT’s and map features in each tree
to the views of and . This gives us more common features
between and , so we can compute a better homography for e.
In this example, features from the entire fourth column of projec-
tors, i.e. projectors with both dark and light shades in Figure 4,
contribute to the refined homography. This process is continued
until the variance of multiple samples of each point feature in the
root view is below a threshold. We found that stable homography
estimates are obtained after a small number of iterations. Details
are available in [2].
This algorithm enables us to create an effective virtual camera with
very high resolution from multiple uncalibrated low resolution
views. With these techniques, our system achieves scalable sub-
pixel alignment on very large display walls, as described in
Section 4.

3. EVALUATION METHODOLOGY
This section first proposes metrics for evaluating display wall align-
ment systems. It then introduces an automated vision-based system
for measuring them. Finally, it details a simulator for evaluating the
scalability of our algorithm on arbitrarily large display walls.

3.1 Metrics for Display Wall Alignment Systems
We use three metrics for evaluating the performance of a display
wall alignment system: local alignment error, global alignment
error, and running time.
Local alignment error quantifies the registration between adjacent
projectors. Qualitatively, misalignment creates artifacts such as
discontinuities and double-images in the overlap region (see
Figure 5a). Quantitatively, the error can be characterized by the
displacement between a point shown on one projector and the
same point displayed by an adjacent projector. An appropriate
measurement unit for this error is the average size of a pixel pro-
jected on the display wall. This unit is invariant to the physical
dimensions of the display wall.
Let be the homography that maps point
from the display surface into projector ’s reference frame. Let

 be the alignment system’s estimate for the inverse mapping.
Due to alignment errors, . In other words, when projec-
tor attempts to illuminate point , it actually illuminates the
point . Let be the set of all features, and be the
set of all projectors. We define local error to be:

where is an indicator variable. I(.) = 1 if falls within the
display frustum of projector and I(.) = 0 otherwise. This formula-

2 2×
5 3×

Strongly Overlaped
(Two Projectors)

Weakly Overlaped
(One Projector)

Homography Tree

Legend

Camera View (Root)
()

va vb

Ta Tb

G V E,()

T G ET,() ET E⊆

e va vb,() ET∈=

Ta Ga Ea,() Tb Gb Eb,() va Ga∈ vb Gb∈ Ga G Gb–=
Ea ET Ga Ga×()∩= Eb ET Gb Gb×()∩=

va vb,()

Ta Tb
va vb

va vb

Hk PR k 1–= p x y 1, ,()T=
k

Ĥk
1–

Ĥk
1– Hk I≠

k p
pk Ĥk

1– Hk p= Ω Φ

El I i p,() I j p,() pi pj– 2⋅ ⋅
i j(,) Φ Φ×∈∀
∑

p Ω∈∀
∑=

I i p,() p
i

tion of the local error does not require knowledge of absolute
points on the display wall, . It is sufficient to examine pairs of
and and measure the relative distance between them. In the
experiments described below, we obtain local error by displaying a
grid pattern and measuring the projected discrepancy between grid
points which are displayed by projectors in overlap regions.
Some alignment algorithms, such as SimAnneal explicitly observe
point- and line-mismatches in the overlap regions and attempt to
optimize pre-warp parameters to minimize this error. However,
most algorithms, including ours, simply aim to register each projec-
tor to the global reference frame as accurately as possible, trusting
that an accurate global registration will lead to small local errors.

Figure 5. Zoomed views of alignment errors on a wall-(6,4).

Global alignment error is a metric for measuring the overall regis-
tration of a display wall. A projector array with excellent local
alignment may still exhibit alignment errors for two reasons: (1)
the projected image may be globally warped so that its edges are
not parallel to the sides of the display surface; (2) small errors in
local alignment can accumulate as homographies are chained,
resulting in non-linear distortions in the projected image. We
define global alignment error to be the displacement between pix-
els in the projected image and their desired locations, as measured
in the reference frame:

This global error metric requires knowledge of the absolute loca-
tions of points on the display surface, thus making accurate mea-
surements of global alignment quite difficult. We approximate the
global error by measuring the nonlinearity of a regularly spaced
grid patter. Fortunately, the human visual system is tolerant of
slight global misalignments while being very sensitive to local dis-
continuities. In practice, once the projected display is roughly
aligned to the global coordinate frame, local errors dominate the
user’s perception of the display wall.
To be of practical value, a alignment algorithm must be fast as well
as accurate. There are two components of running time: the time
taken to acquire images, and the time needed for computation,
including image processing and calculating homographies. We
present timing results comparing our system to existing approaches.

3.2 Automatic Measurement of Alignment Errors
Manual measurement of local and global alignment errors is a
tedious, time-consuming process. Fortunately, we can employ the

same camera hardware used for calibrating the display wall in
evaluating its local alignment accuracy.
To measure local alignment error, each projector displays a set of
calibration patterns. Unlike the patterns used during the calibration
phase, these patterns are aligned (to the best of the system’s abil-
ity) to the global reference frame. The camera captures detailed
images of the seam regions where projection areas overlap. It
records the displacement between a point displayed by one projec-
tor and the same global point displayed by other projectors at the
seam. The average displacement over all seam regions on the dis-
play surface gives an estimate of local alignment error (in pixels).

Figure 6. This graph plots the ground truth error (obtained from the
simulator) against the observed error, as determined by our auto-
mated measurement system. is the standard deviation of the
noise model for feature detection. From this graph, we see that our
automated measurement system slightly (but consistently) overesti-
mates the error of the display wall alignment systems.

In principle, one must be cautious about using the same camera
hardware and similar image processing algorithms, both for align-
ing the display wall and measuring its alignment accuracy. For this
reason, we simulated the automatic measurement system in the
display wall simulator (see Section 3.3). In this series of tests, we
assumed that the noise in feature detection could be modeled using
a zero-mean Gaussian distribution, . Figure 6 plots the
actual local error (ground truth available to the simulator) against
the measured local error, for a range of noise models. A noise-free
measurement process would obviously generate a straight line

. We note that all of the curves lie above the line; this
means that our automated measurement system is biased, and the
bias is a consistent overestimate. Our experimental data indicates
that our automated measurement system has pixels in both
x- and y-direction for each feature detected. Since we use four
points for each of the 38 seams on wall-(6,4), the standard devia-
tion on average local error estimates is and
the 97% confidence interval is pixel.

3.3 Display Wall Simulator
To supplement our experiments on the 24-projector display wall
we implemented a display wall simulator in Matlab. The primary
function of the simulator is to investigate whether our camera
homography tree algorithm scales well to very large format display
walls, both in terms of alignment accuracy and running time. Addi-
tionally, the simulator may enable us to determine the components
of a display wall system that are most likely to impact alignment
accuracy. We broadly classify sources of alignment errors into four
categories, each parametrized with one coefficient.

p pi
pj

B

C

A

a) The uncalibrated setup;
b) The result after single-view

calibration: the average local
error is 1.95 pixels;

c) Sub-pixel accuracy achieved
using homography tree algo-
rithm cam-2×2: the average
local error is 0.55 pixel.

Eg I k p,() p pk– 2⋅
k Φ∈∀
∑

p Ω∈∀
∑=

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.5

1.0

1.5

2.0

2.5

σ = 0.75

σ = 0.50

σ = 0.25

σ = 0.00

True Error (Pixels)

M
ea

su
re

d
E

rr
or

 (P
ix

el
s)

σ

N 0 σ,()

y x= y x=

σ 0.5=

σ̃ 0.5 4 38×()⁄ 0.04= =
3σ̃± 0.12±=

• Projector optics: We can expect errors to increase when the pro-
jectors’ optics cannot be accurately modeled using a perspective
projection model. We use the same five-parameter distortion
model described in section 2.2 to simulate the projector optics. The
Projector Distortion Factor, p, is coupled to both radial and tan-
gential distortions, i.e. we define:

The projectors in our system exhibit little distortion; we estimate

, which corresponds to an average warp of 0.32 pixels at the
projected image’s edge. In simulations we use p from 0.01 to 0.04.

• Camera optics: Although our cameras exhibit significant distor-
tion, especially in the widest-zoom setting, the effective distortion
is greatly reduced after either offline camera calibration or our
automatic distortion correction technique. However, these methods
can not fully rectify the images, we model the residual distortion
with a Camera Distortion Factor, c:

We estimate for our camera, which corresponds to an aver-
age warp of 0.23 pixels along the edge of the camera image. In the
simulations, we use c from 0.00 to 0.05.

• Image processing: The simulator uses an abstract model for
image processing. We assume that the system locates line features
in the camera image, and that the position estimate for these fea-
tures is corrupted with a zero-mean Gaussian noise. We define
Image Noise Factor, n to be from 0.0 to 1.5, where corre-
sponds to pixel error, or .

• Non-planar display surface: Our alignment system assumes
that all transforms can be modeled using 2-D planar homographies
– an assumption that relies on a planar display surface. The simula-
tor models the shape of the display screen as a Gaussian surface
parametrized on a single variable, the Screen Curvature Factor, ,
i.e. we define the screen as a surface:

where and are the width and height of the screen, and all
units are in mm. In the experiments, we use s from 0.0 to 0.2,
where corresponds to a 20 mm central bulge, which equals
to the real measurement in our rear-projection screen.

We present some of the simulation results in Section 4.3.2.

4. RESULTS
This section presents results from several series of experiments.
Section 4.1 compares our approach to two existing display wall
alignment algorithms. Section 4.2 examines how local error
improves as the number of camera views is increased. Section 4.3
confirms that the camera homography tree algorithm remains
accurate as the number of projectors in a display wall increases.
These experiments on the 24-projector wall are further supported
by simulation runs on very large format displays. Section 4.4 com-
pares our algorithm’s running time with existing approaches.

4.1 Comparisons with Existing Techniques
Two recent systems, Chen et al.’s SimAnneal [3] and Yang et al.’s
PixelFlex [13] were selected as suitable benchmarks for display
wall alignment. We were able to obtain an implementation of the
former for evaluation purposes, and were able to re-implement rel-
evant portions of the latter algorithm from published details. The
PixelFlex algorithm utilizes only a single camera view covering
the entire rear-projection screen in our setup.4 The SimAn-
neal algorithm requires detailed views of inter-projector seams,

and these images were collected automatically using a pan-tilt-
zoom camera. The same camera control software (with different
parameters) was used in our system to collect the cam- views
as input to the camera homography tree algorithm. Before present-
ing results, we briefly describe the image processing aspects for
each algorithm.
SimAnneal uses a sequence of point and line feature correspon-
dences wherever two or more projectors share a seam. The dis-
placement between corresponding features displayed by different
projectors provides an error metric that is minimized using simu-
lated annealing. The implementation of SimAnneal we obtained
assumes for its initial conditions that the homography between
adjacent projectors can be adequately approximated by a simple
translation and scale. This assumption is valid only when projec-
tors are initially well-aligned; our uncalibrated setup, as seen in
Figure 5a, exhibits significant error from rotation and perspective
effects. As a result, SimAnneal performs poorly in our experi-
ments, rarely achieving less than 12 pixels of local error after
500K iterations. For this reason, we report results from [3], where
SimAnneal was evaluated on a much smaller wall-(4,2) display.
We expect that with proper initialization, this value would repre-
sent a closer, but still optimistic estimate of SimAnneal’s potential
accuracy on a wall-(6,4).
In the PixelFlex system, each projector displays an array of circles
with a Gaussian intensity distribution, and the centroids of the
observed Gaussians in the camera image provide a sub-pixel-accu-
rate estimate of the feature locations [13]. Our implementation of
their algorithm required straightforward modifications to the cam-
all version of our system: the main difference is the use of Gauss-
ian rather than line features.
Table 1 summarizes the results of our experiments. In the single-
view (cam-all) configuration with no homography trees, our sys-
tem’s accuracy is comparable to the existing systems. We notice
that cam-all performs slightly better than PixelFlex. The reason is
that, under perspective projection, lines are invariant but Gaussians
undergo asymmetric distortion – possibly inducing a bias in Pix-
elFlex’s estimate of feature location. When our system is able to
take advantage of multiple camera views, e.g. in the cam- con-
figuration, the result improves dramatically – the average local
error is reduced by half, as shown in Figure 5c.
Table 1. Alignment results of various algorithms on wall-(6,4).

4.2 Improving Accuracy with More Camera Views
This experiment investigates the trade-offs between effective cam-
era resolution and homography chain length. Higher effective cam-
era resolution, achieved using a tighter zoom, enables the system
to locate features in the calibration slides with greater accuracy. On
the other hand, the smaller field-of-view implies that more camera
shots are needed to span the complete display wall. Figure 7 dem-
onstrates that the camera homography tree algorithm does improve
local accuracy. The single view approach, cam-all, exhibits
slightly more than 1 pixel error on wall-(6,4). Additional camera
views improve accuracy, enabling us to achieve sub-pixel error

k1 k2 k3 p1 p2, , , ,() p 1.0 1.0 0.2 0.02 0.005, , , ,()×=

p 0.02=

k1 k2 k3 p1 p2, , , ,() c 1.0 1.0 0.2 0.02 0.005, , , ,()×=
c 0.05=

n 1.0=
0.5± N 0 0.5,()

s

f x y,() s 200× Ψ x Ws,() Ψ y Hs,()××=
Ψ x a,() e 4x a⁄()2– e 4––() 1 e 4––()⁄=

Ws Hs

s 0.1=
18' 8'×

18' 8'× 4This camera configuration was identical to the cam-all configuration in
our algorithm.

System Number of
Camera Views

Local Error
Avg (Max)

Global Error
Avg

SimAnneal 152 1.35 (N/A) N/A
PixelFlex 1 1.73 (3.9) 1.5
Cam-all 1 1.19 (4.1) 1.3
Cam-2×2 15 0.55 (2.3) 1.8

N N×

2 2×

rates on a display using only a resolution
camera. The best result is achieved by cam- , which exhibits
less than half the error of the best single camera view algorithm.

Figure 7. This graph shows how the camera homography tree algo-
rithm improves average local errors. A single camera view (cam-all),
even with super-resolved feature detection, is unable to achieve
sub-pixel alignment accuracy on a wall-(6,4). These experiments
were performed on our 24-projector display wall.

4.3 Scalability
The previous experiment showed that the camera homography tree
algorithm significantly improves accuracy on our current display
wall hardware. The following two experiments investigate whether
the multi-view algorithm continues to outperform single-view
alignment techniques across different scales of displays. The first
shows that the observed behavior is also true for smaller displays
and the second indicates that our algorithm scales to very large for-
mat displays consisting of hundreds of projectors.

4.3.1 Scalability Results on 24-projector Display Wall
Figure 8 investigates the camera homography tree algorithm's
behavior on display walls of different sizes. These experiments
were performed on the 24-projector wall, using several rectangular
sub-arrays of projectors ranging from wall-(2,2) to the complete
display. The results confirm that the multiple view approach to dis-
play wall alignment scales well with projector wall size.
We note that local error for cam- is higher than expected in the
wall-(4,3) scenario. We believe that this may be due to screen cur-
vature; initial simulation results support our hypothesis. We are
conducting additional experiments to examine the issue.

Figure 8. This graph shows how the average local error for different
configurations of the camera homography tree algorithm scale with
display wall size. Note that we achieve sub-pixel error rates even on
the largest display wall. These experiments were performed on our
24-projector display wall.

4.3.2 Scalability Results on Display Wall Simulator
To evaluate our algorithm’s performance on very large displays,
we run the simulator on the following display walls: wall-(H,V),
where (H,V) ∈ {(2, 2), (3,2), (4, 3), (6, 4), (9, 6), (12, 8), (18, 12),
(24, 16)}. Figure 9 shows the expected local error versus the total
number of projectors in a display. Each curve in the graph corre-
sponds to a choice of cam- , where N ∈ {2, 3, 4, 6, 9, 12, 18, 24}.
There is no benefit to using a wider field-of-view camera than nec-
essary on a given display wall. Therefore, each cam- curve
starts at the largest display wall that can be completely seen within
a single view. By definition, the curve cam-all simply connects the
starting data point of each cam- curve. Simulation parameters
were selected to be similar to the current physical setup: ,

, , and each data point was generated by aver-
aging the results of five runs.

Figure 9. Semi-log plot of local alignment error for simulated display
walls of various sizes. The horizontal axis gives the number of pro-
jectors comprising the display, i.e. h×v for Wall-(h,v). It shows that
single-view alignment algorithms fail to achieve satisfactory accu-
racy, whereas the camera homography tree algorithm scales well.

As Figure 9 shows, the simulation data on smaller display walls is
consistent the experimental evidence presented before. This graph
also shows simulations extended to very large scale displays. We
make the following observations about Figure 9. First, the align-
ment error for a single-view algorithm (cam-all) grows almost lin-
early as projectors are added. Second, the curves for the tightly-
zoomed camera configurations (e.g. cam-) are almost flat.
This validates our earlier claim that the camera homography tree
algorithm scales well with display wall size. Third, note that for a
particular cam- curve, the local error decreases as the number
of projectors increases. This is because, on a larger display, each
projector appears in more camera views. Our homography tree
algorithm is able to utilize multiple views of point features to bet-
ter refine the homographies. This results in improved accuracy.
Finally, one can derive significant benefits from the camera
homography tree algorithm even by chaining together a small
number of views. For instance, on wall-(24,16), going from cam-

 (i.e. cam-all) to cam- cuts the local alignment error
from almost 8 pixels to about 2.5 pixels.

6000 3000× 640 480×
2 2×

Camera Zoom Factor

Lo
ca

l E
rr

or
 o

n
w
al
l-(

6,
4)

(P
ix

el
s)

0.0

0.5

1.0

1.5

cam-2×2cam-3×3cam-4×4cam-all

2 2×

Lo
ca

l E
rro

r (
Pi

xe
ls

)

0.0

0.5

1.0

1.5

2.0
PixelFlex
cam-all
cam-2×2

wall-(6,4)wall-(4,3)wall-(2,2)

N N×

N N×

N N×
p 0.02=

s 0.1= c 0.05= n 1.0=

1 10 100 1000
0

1

2

3

4

5

6

7

8 cam-all

cam-2×2

cam-24×24
cam-18×18
cam-12×12
cam-9×9
cam-6×6
cam-4×4
cam-3×3

Lo
ca

l E
rr

or
 (P

ix
el

s)

Number of Projectors (Log Scale)

2 2×

n n×

24 24× 18 18×

4.4 Running Time
As mentioned earlier, there are two major components of the run-
ning time: the time required to collect the necessary images; and
the time needed to process these images and calculate the homog-
raphies used to align the projectors. Table 2 presents the timing
results. Our system is implemented in Matlab 6.0 with a moderate
amount of optimization. Since our implementation of the PixelFlex
algorithm uses the same code base, its running time is almost iden-
tical to cam-all. Therefore, it is not listed. It is clear that our system
is fast: we can align wall-(6,4) in under 9 minutes.
Table 2. Comparison of running time (minutes) between SimAnneal
and our system. Data column lists the time taken to collect images;
Comp column is the computation time needed to calculate homogra-
phies from the data. SimAnneal was not evaluated on wall-(4,3); tim-
ing information reported for wall-(4,2) in [3] was used. Our system is
faster by more than an order of magnitude on every display walls.

5. CONCLUSION
Multi-projector display systems have become increasingly popular
for a wide variety of applications. As display walls incorporate
more projectors, it becomes necessary to develop automated
approaches to help with designing, building and maintaining these
systems. One key aspect to scaling tiled displays in both size and
number is having a good automated alignment system. This paper
describes a practical vision-based system for automatically calibrat-
ing such large format multi-projector displays. It incorporates an
automated sub-pixel accuracy feature detection algorithm for tiled
displays that simultaneously calibrates intrinsic camera parameters.
It also includes an automatic vision-based system for measuring
display wall alignment accuracy. A comprehensive series of experi-
mental tests on a 24-projector wall demonstrate that our camera
homography tree algorithm significantly improves local alignment
accuracy by incorporating information from multiple, uncalibrated
camera views. Our algorithm’s accuracy exceeds that of existing
solutions, and unlike those approaches, scales better (in both accu-
racy and speed) as projectors are added to the display system.
The system also includes a simulator tool. It helps system designers
examine the impact of design decisions on the expected accuracy of
a display wall. We have run many simulation tests, and the results
(validated on real data) indicate that our approach is practical even
for very large format displays. These simulation results would help
a designer determine the quality and number of cameras needed,
and the time necessary for aligning a display wall.
Our system is now in regular use at the Princeton Scalable Display
Wall. The size of this display has warranted a new class of scalable
alignment solutions, such as the one described here. We anticipate
such solutions will increasingly be required by future displays.

6. ACKNOWLEDGEMENTS
The Princeton Scalable Display Wall project is supported in part
by Department of Energy grant DE-FC02-99ER25387, by NSF
Infastructure Grant EIA-0101247, by NSF Next Generation Soft-
ware Grant ANI-9906704, by NCSA Grant ACI-9619019 (through
NSF), by Intel Research Council, and by Intel Technology 2000
equipment grant. Thanks to Tat-Jen Cham, Gita Sukthankar, and
Mark Ashdown for valuable feedback on the paper. Also, thanks
for all the comments by the anonymous reviewers.

References
[1] D.Brown. Lens Distortion for Close-Range Photogrammetry.
Photometric Engineering, 37(8), 1971.

[2] H. Chen, R. Sukthankar, G. Wallace, and T.-J. Cham. Accurate
Calculation of Camera Homography Trees for Calibration of Scal-
able Multi-Projector Displays. Technical Report TR-639-01, Princ-
eton University, September 2001.

[3] Y. Chen, D. Clark, A. Finkelstein, T. Housel, and K. Li. Automatic
Alignment of High-Resolution Multi-Projector Display Using an
Uncalibrated Camera. In Proceedings of IEEE Visualization, 2000.

[4] T. Funkhouser and K. Li. Large Format Displays. Computer
Graphics and Applications, 20(4), 2000. (Guest editor introduction
to special issue).

[5] Intel Corporation. Open Source Computer Vision Library.
<http://www.intel.com/research/mrl/research/opencv/>.

[6] E. Kang, I. Cohen and G. Medioni. A Graph-Based Global Reg-
istration for 2D Mosaics. In Proceedings of International Conference
on Pattern Recognition, 2000.

[7] K. Li, H. Chen, Y. Chen, D. Clark, P. Cook, S. Daminakis, G. Essl,
A. Finkelstein, T. Funkhouser, A. Klein, Z. Liu, E. Praun, R. Samanta,
B. Shedd, J. Singh, G. Tzanetakis, and J. Zheng. Building and Using
a Scalable Display Wall System. Computer Graphics and Applica-
tions, 20(4), 2000.

[8] R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch, H. Towles,
B. Seales, and H.Fuchs. Multi-Projector Displays using Camera-
Based Registration. In Proceedings of IEEE Visualization, 1999.

[9] H. Shum and R. Szeliski. Panoramic Image Mosaics. Technical
Report MSR-TR-97-23, Microsoft Research, 1997.

[10]R. Sukthankar, R. Stockton, and M. Mullin. Smarter Presenta-
tions: Exploiting Homography in Camera-Projector Systems. In Pro-
ceedings of International Conference on Computer Vision, 2001.

[11]R. Surati. A Scalable Self-Calibrating Technology for Seamless
Large-Scale Displays. PhD thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute of Technol-
ogy, 1999.

[12]R. Tsai. A Versatile Camera Calibration Technique for High
Accuracy 3D Machine Vision Metrology using Off-the-shelf TV
Cameras and Lenses. IEEE Journal of Robotics and Automation,
RA-3(4), 1987.

[13]R. Yang, D. Gotz, J. Hensley, H. Towles, and M. Brown. Pix-
elFlex: A Reconfigurable Multi-Projector Display System. In Pro-
ceedings of IEEE Visualization, 2001.

Display
Size

SimAnneal Our System
Setup

(# steps)
Data
(min)

Comp
(min) Setup Data

(min)
Comp
(min)

wall-(2,2) 10k 10.0 15.2 cam-all 0.13 0.17
wall-(4,3) 20k 33.0 34.5 cam-all 0.53 0.25

cam-2×2 2.00 0.92
wall-(6,4) 50k 90.0 95.5 cam-all 1.06 0.42

cam-4×4 2.52 0.92
cam-3×3 4.30 1.67
cam-2×2 5.90 2.50

	1. Introduction
	Figure 1. The Princeton Scalable Display Wall is an display with an effective resolution of pixels. This behind-the- scene photograph shows the array of 24 microportable projectors.

	2. Display Wall alignment
	Figure 2. This diagram shows the relationship between the various homographies described in the text. Our system’s goal is to recover the homography () mapping each projector , to the global ref erence frame. Although cannot directly be obse...
	Figure 3. An example of the image processing and feature extrac tion procedure of our system.
	Figure 4. The Construction and Optimization of a Camera Homogra phy Tree for Wall-(6,4) with Cam-2¥2 Configuration.

	3. Evaluation Methodology
	Figure 5. Zoomed views of alignment errors on a wall-(6,4).
	Figure 6. This graph plots the ground truth error (obtained from the simulator) against the observed error, as determined by our auto mated measurement system. is the standard deviation of the noise model for feature detection. From this grap...

	4. Results
	Table 1. Alignment results of various algorithms on wall-(6,4).
	Figure 7. This graph shows how the camera homography tree algo rithm improves average local errors. A single camera view (cam-all), even with super-resolved feature detection, is unable to achieve sub-pixel alignment accuracy on a wall-(6,4)....
	Figure 8. This graph shows how the average local error for different configurations of the camera homography tree algorithm scale with display wall size. Note that we achieve sub-pixel error rates even on the largest display wall. These exper...
	Figure 9. Semi-log plot of local alignment error for simulated display walls of various sizes. The horizontal axis gives the number of pro jectors comprising the display, i.e. h¥v for Wall-(h,v). It shows that single-view alignment algorithms...
	Table 2. Comparison of running time (minutes) between SimAnneal and our system. Data column lists the time taken to collect images; Comp column is the computation time needed to calculate homogra phies from the data. SimAnneal was not evaluat...

	5. Conclusion
	6. Acknowledgements

