
Automatic Alignment of Tiled Displays for A Desktop Environment

Grant Wallace† Han Chen†† Kai Li †

†Princeton University Computer Science ††IBM TJ Watson Research Center
{gwallace, li}@cs.princeton.edu chenhan@us.ibm.com

Abstract

Tiling an array of projectors has become a practical way to
construct a high resolution display system. Unfortunately,
such high-resolution display systems have limited use be-
cause they require specially developed parallel visualiza-
tion programs that run on a custom-designed parallel ma-
chine or a PC cluster. This paper presents an automatic
alignment mechanism for arbitrarily tiled displays running
a desktop environment so that users can run ordinary ap-
plications developed for desktop PCs. The system consists
of three primary procedures: detecting projector misalign-
ment, calculating corrective transformations, and real-time
warping for the desktop environment. This allows users to
run any 2D, 3D or video applications without modifica-
tions or special hardware support. Our experiments indi-
cate that the system is able to achieve sub-pixel accuracy
and achieve real-time warping with minimum system per-
formance degradation.

1. Introduction
Large-format high-resolution displays are increasingly use-
ful in a variety of application environments including con-
trol rooms, CAD design, education, and business. For col-
laborative displays to be effective, it is important that they
are easy to use and provide enough resolution and size to be
readily viewable by the entire group.

An effective way to build a high-resolution display sys-
tem is to tile an array of projectors together and drive it
with a high-performance graphics machine or a cluster of
PCs. This approach has been used to tile tens of projec-
tors together to build wall-size display systems that deliver
tens of million pixels per frame for large-scale data visual-
ization applications [7]. While such systems have been use-
ful for many large-scale scientific and collaborative applica-
tions, its application domain has been limited for two main
reasons: cost and ease of use. High-performance graphics
machines are very expensive. Using a PC cluster to drive
tiled displays can reduce the cost substantially, but it is still
quite cumbersome to develop parallel visualization applica-
tions for a PC cluster. Ideally, users would like to drive a

Figure 1: A two projector, automatically aligned, tiled Win-
dows desktop

tiled display with a commodity PC system. This would be
the most economical approach and could run any existing
desktop application without modification. In addition, this
approach presents users with an intuitive and familiar user
interface.

The challenge is to develop a system to align tiled dis-
plays precisely and run desktop applications seamlessly and
efficiently. An important aspect when tiling together pro-
jectors is to achieve precise geometric alignment. Even
small amounts of misalignment will lead to gaps and dou-
ble images which make the display unacceptable. Manual
alignment is possible but tends to be time consuming and
inaccurate. Automated approaches can be fast and accu-
rate [1][15][10], but must be applied in real-time to the dis-
played imageries. Applying the alignment requires that a
projective warp be applied to each projector’s output. Warp-
ing the imagery is typically done on a per-application basis
by introducing an additional rendering stage. In order to run
all applications in the desktop environment seamlessly, one
needs to develop a system that can warp the imagery for the
entire desktop efficiently and transparently without access-
ing any source codes or rebuilding binary executables for
any applications.

1

The remainder of this paper presents a system we de-
veloped called DeskAlign which automatically aligns and
warps the windows desktop of a tiled display driven by a
single PC. Some previous work will be discussed in Sec-
tion 2. Section 3 will talk about design choices in creating
such a system. Section 4 will describe our system’s imple-
mentation and section 5 will present some evaluations and
experiences with using DeskAlign. Section 6 will present
our conclusions.

2. Related Work

Early display systems built with tiled projectors require
manual alignment which is both time consuming and in-
accurate [7]. Advances in graphics hardware have made it
possible to warp imagery in real-time to correct misalign-
ments for a large-scale tiled display system. Several tech-
niques for camera-based automatic alignment of tiled pro-
jectors have been proposed. The common technique is to
use a camera to detect projector feature points and derive
transformations that can be used to warp the projected pix-
els, thereby delivering seamless imagery on the projected
surfaces. Surati [14] builds lookup tables that map pixels
from each projector to points on the display surface; this
is done by physically attaching a calibration grid (printed
by a high-precision plotter) onto the surface. PixelFlex [15]
uses a single, wide field-of-view camera in conjunction with
structured light patterns from each projector to determine
camera-projector homographies, enabling automatic align-
ment of a reconfigurable display system.

Using a single camera image of the entire display sur-
face becomes difficult as the size of the display system in-
creases. This motivates approaches to integrate information
about the projector geometry from a set of camera images,
each of which observes only a portion of the display surface.
Raskaret al proposed an approach to use two calibrated
cameras in conjunction with projected patterns to recover
the 3-D model of a non-planar projection surface [10]. A
similar technique was recently proposed to build into a pro-
jector [11]. In order to scale automatic alignment for a large
number of tiled projectors, the Princeton scalable display
wall used an uncalibrated pan-tilt-zoom camera to detect
the relative misalignments of a large number of tiled pro-
jectors and used a simulated annealing algorithm to solve a
global optimization problem to derive the transformations
for imagery warping [3]. An improved technique was later
proposed to build and refine a camera homography tree to
automatically register any number of uncalibrated camera
images [1], this can achieve sub-pixel alignment accuracy
for a display system built with tens of tiled projectors.

Previous approaches to running desktop environments
on tiled displays have focused on PC cluster architectures.
The common architecture uses a proxy machine. The proxy

Display

Display

Display

Virtual Screen

Snooper

Distributor

Primitives

Prim
iti

ves

Figure 2: Virtual Display Driver for Tiled Display

Client

X Proxy

Display

Display

Display

Client

Client

Primitives Prim
itiv

es

Figure 3: Distributed Multiheaded X

looks like a single display to the applications, but it then
divides the display content and redistributes it to the tile
nodes. A Windows implementation of such a system is the
Virtual Display Driver (VDD) [7]. VDD creates a virtual
Windows Desktop of arbitrary resolution. When applica-
tions running on that computer make GDI drawing calls,
the calls are intercepted, scaled and sent to the appropri-
ate nodes of the tiled display as shown in Figure 2. Dis-
tributed Multiheaded X (DMX) [8] is a similar proxy for X
Window environments. An X-server runs on one PC and
accepts display commands and then redistributes them to
the cluster nodes (Figure 3). Both VDD and DMX operate
with 2D drawing primitives in order to reduce the network
bandwidth which would be required when sending pixel in-
formation. These 2D based proxies suffer two main draw-
backs. First, they are operating system version dependent
and can rely on unpublished interfaces; this makes them
difficult to implement and maintain. Secondly, the proxy
can become a performance bottleneck in redistributing the
graphics calls.

Another approach is to distribute pixels instead of 2D
and 3D primitives. An example of this approach is an
adaptation of Virtual Network Computing (VNC) [12].
VNC allows a user to connect to a remote computer and
view/interact with the desktop environment at the pixel
level. It requires the remote computer to run VNC Server.
VNC Server transfers pixels, which are compressed using
simple algorithms, to the client computer. The special VNC
software to tile displays is called VNCWall. The VNCWall
server is able to handle requests for multiple rectangular
subsections of the display. This allows each node in the

2

L RVNC Server

VNC Client

Host Graphics Card
1) Rendering Primitives

2) Local loopback

3) Warp and Render

Snooper

Figure 4: VNC loopback mode on a single PC.

display to connect to the server and ask for a different sub-
section thus creating a tiled desktop. In order to use this
approach to run a tiled desktop environment from a single
PC, it needs to use a loop-back mode allowing both client
and server to run on the same machine (Figure 4). However,
this approach is inefficient; it cannot provide real-time win-
dow refresh and dragging nor smooth cursor movements.
Furthermore, this approach does not perform the necessary
imagery warping for automatic alignment of tiled displays.

3. Design Choices
When creating an automatically aligned tiled desktop, there
are three main steps: determining projector misalignment
(deriving transformations), applying projector transforma-
tions, and distributing the desktop content to the display
tiles. Each step has several design choices.

The first step, deriving the transformations for tiled dis-
plays, is loosely coupled with the next two steps. As men-
tioned in section 2 there are several existing techniques
for determining projector misalignment. The design choice
mostly depends on the scale and resolution of the screen
configuration. One thing to note is that the method of
detecting misalignment is independent of the other design
choices.

The second and the third steps, the method of applying
the transformations and the method of distributing the desk-
top content to tiled displays, are tightly coupled. If the sys-
tem responsible for tiling the desktop has information about
the positions of the projectors, then it can adjust the amount
of content it transfers for each projector. For instance, if a
projector covering a small area of screen is surrounded by
projectors covering larger areas, then the tiling system can
send a smaller section of the desktop to the one, while send-
ing more to the others. This allows the physical positioning
of the projectors to be coarse and still produce a good final
result. On the other hand, if the tiling system has no knowl-
edge of the projector positions (other than which grid area it
occupies) then it sends the same resolution to each display
and the post rendering transformations must make the size
of the projectors’ output match that of the smallest. This
has the disadvantage of wasting projector resolution or re-

GPU

Main

Memory

Primary Surface

Texture Surface

Memory

Controller

Host Graphics Card

1) R
ender to Texture

2) W
arp

Figure 5: Rendering architecture of NVKeystone

quiring a more precise physical placement of the projectors.
In order for the tiling system to be aware of the projec-

tor alignment, either the desktop system or its proxy must
be able to handle this information. Current desktops do not
have the capability to handle detailed projector position in-
formation. This type of integration would require the use
of a proxy such as VDD, VNCWall, DMX, or possibly fu-
ture versions of Windows Terminal Services1. Proxies can
add considerable overhead as data must be shipped to the
proxy and then redistributed to the display nodes. Even
if everything is on a single PC it still requires copying the
data around as opposed to just sending drawing calls to the
graphics card.

If the tiling system is unaware of projector alignment,
as is the case with existing systems’ multi-monitor support,
then we must apply alignment transformations after the con-
tent has been rendered on the graphics card. These transfor-
mations can be done in one of three places: the graphics
card, the projector, or specialized pixel engines sitting be-
tween the graphics card and projector. Although some pro-
jectors have the ability to perform projective transforma-
tions, they are very expensive. There are video-switch pixel
engines that can perform transformations but they are also
expensive solutions. Among these alternatives, the most
cost effective approach is to perform the transformations on
the graphics card.

An ideal way to perform transformations on a graph-
ics card is to let a program specify required post-rendering
transformations via a natively supplied API. Unfortunately,
the current commercial solution, the NVIDIA NVKeystone
extension (Figure 5), is limited to perform warping of one
display per machine which conflicts with our goal of using
one PC to drive multiple projectors. Another limitation is
that it is designed for manual adjustment; there is no way to
pass transformation information via an API.

In the absence of graphic card support for post-rendering
transformations, we propose a two-pass rendering approach

1Current versions of Windows Terminal Server only allow one client
connection at a time and have no sub-region support.

3

by adding an imagery warping stage to the end of the ren-
dering pipeline. Adding another rendering stage is difficult
on PC platforms. In order to perform both rendering passes
on the same graphics card, with a single graphics pipeline,
one needs to have the ability to warp the rendered pixels in
the frame buffer and have the control over when the buffer
swapping occurs. Unfortunately, such control requires inte-
gration into the operating system. An alternative approach
is to use a second graphics pipeline for the transformations
[9]. This approach can leverage the quad headed graphics
cards which have 4 graphics pipelines. To perform two pass
rendering we group two pipelines together for each display.
This approach can deliver good performance at a relatively
low cost.

4. DeskAlign System
We have designed and implemented a system called
DeskAlign which allows the Windows desktop and Win-
dows applications to run on tiled projectors transparently
and seamlessly. DeskAlign implements an automatic align-
ment mechanism to align tiled projectors that are physically
misaligned. It uses a camera to determine the projector po-
sitions and calculates an appropriate perspective transfor-
mation for each projector. The display transformations are
then applied on a multi-headed graphics card running on a
single PC. These transformations warp the output imagery
of each projector such that the final display appears aligned.

The system is comprised of three components. 1) Detect-
ing projector feature points 2) Determining corrective per-
spective transformations from the feature points and 3) Ap-
plying the corrective transformations on the graphics card
using two pass rendering. We have chosen to use the Cam-
era Homography Tree (CHT) alignment algorithm [1] for
components 1 and 2. Component 3 implements the trans-
formation in a similar way to [2].

4.1. Detecting Projector Positions
The first step in automatically aligning a tiled display is de-
termining the relative positions of the projectors. Simple
image processing techniques can typically locate features to
the nearest pixel in an input image. However, since a single
pixel in our camera images covers several projected pixels
on the display surface, our application demands more so-
phisticated methods. Also, commodity video camera lenses
usually exhibit noticeable distortions, making simple per-
spective camera models insufficient. We use the following
five-parameter model to correct for lens distortion.

x′ = x + x[k1r
2 + k2r

4 + k3r
6] + [2p1xy + p2(r2 + 2x2)]

y′ = y + y[k1r
2 + k2r

4 + k3r
6] + [2p2xy + p1(r2 + 2y2)]

wherer2 = x2 + y2, and(k1, k2, k3) are the radial distor-
tion coefficients, and(p1, p2) the tangential distortion co-

efficients. These distortion parameters can be obtained via
standard offline calibration procedures [6].

a

d

c

b

e

f

Figure 6: An example of the image processing and feature
extraction procedure of our system.

The feature detection component of our system displays
a sequence of calibration slides on the projectors. The stan-
dard approach would be to project a single known pattern,
such as a checkerboard, from each projector and use the
checkerboard’s corners as features. We improve upon this
by projecting pairs of patterns: a set of horizontal lines fol-
lowed by a set of vertical lines (figure 6a and b). The in-
tersections between these line sets can be determined with
greater accuracy than standard corner detection. To process
the images we fit a quadratic function to the intensity values
inside every9× 1 and1× 9 window in the image. A strong
peak of the function under a window indicates that a line
crosses through the window, and this provides a sub-pixel
accuracy estimate of the line’s local position, shown by dots
in Figure 6c and 6d. The output of this procedure is a set of
position estimates with floating-point precision along each
visible line. These feature point positions are then adjusted
for camera lens distortion using the model described above
and line equations are fit to the observed data. The horizon-
tal and vertical lines are intersected creating a set of accu-
rate, stable point features for each projector within a camera
view.

A GUI application called ‘DeskDetect’ was developed to
handle the data collection phase (figure 7). It gathers con-
figuration information from the user, and captures feature
point images of the projectors. DeskDetect coordinates the
use of a camera with the tiled display. It sends commands
to draw horizontal and vertical lines to the tiled display and
takes images of these features.

4.2 Calculating Corrective Transformations

Once we’ve detected the feature points of the projectors, we
need to calculate perspective 2-D homographies, one per
projector, that when applied will make the tiled display ap-

4

Figure 7: DeskDetect GUI for collecting projector align-
ment information.

pear aligned. In the initial state of our system, we do not
know the positions, orientations and optical parameters of
the projectors or camera. But we assume that the camera
and projector optics can be modeled by perspective trans-
forms and that the projection surface is flat. Thus, the vari-
ous transforms between camera, screen, and projectors can
all be modeled as 2-D planar homographies:

xw
yw
w

 =

h1 h2 h3

h4 h5 h6

h7 h8 h9

X
Y
1

 ,

where(x, y) and (X, Y) are corresponding points in two
frames of reference, and~h = (h1 . . . h9)T (constrained
by |~h| = 1) are the parameters specifying the homography.
These parameters can be determined from as few as four
point correspondences using standard methods. We employ
the closed-form solution described in [13][5]. It is summa-
rized below.

Givenn feature point matches,{(xi, yi), (Xi, Yi)}, i =
1, . . . , n. Let A =

X1 Y1 1 0 0 0 −X1x1 −Y1x1 −x1

0 0 0 X1 Y1 1 −X1y1 −Y1y1 −y1

X2 Y2 1 0 0 0 −X2x2 −Y2x2 −x2

0 0 0 X2 Y2 1 −X2y2 −Y2y2 −y2

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

Xn Yn 1 0 0 0 −Xnxn −Ynxn −xn

0 0 0 Xn Yn 1 −Xnyn −Ynyn −yn

and compute the eigenvalues ofAT A. ~h is given by the
eigenvector corresponding to the smallest eigenvalue.

Our system employs this technique to compute
projector-to-camera homographies. The projector-to-
camera homographies transform each projector’s area of

projection into the camera’s coordinate system. These ho-
mographies are determined as follows. Each projector
Pk displays calibration slides with highly-visible features,
whose locations are known in projector coordinates (as de-
scribed in section 4.1). By observing the locations of these
features in the camera image, we can determine the rele-
vant projector-to-camera homographycHk . We determine
the camera-to-screen mappingsHc by having the user click
on the 4 corners of the screen in the camera image. This
enables us to computesHk, the homography mapping pro-
jectorPk to the screen:

sHk = sHc × cHk.

Note thatsHk expresses the geometric distortion induced
by the projector’s oblique placement. This distortion is re-
moved by prewarping each projectorPk ’s output bysH

−1
k

(figure 8).

sHk

Pk

Figure 8: The display is aligned by applying a perspective
transformation for each projector

4.3. Applying Alignment Transformations
The perspective transformations described in the pervious
section must be applied to the output pixels in real time for
the tiled display to appear aligned. As described in section
3, we chose to implement our alignment transformations on
the graphics card. This eliminates the need to modify pro-
prietary operating system code and allows us to avoid spe-
cialized hardware pixel engines or projectors.

In order to add a warping stage to the pixels rendered
from the entire desktop environment without modifying
proprietary operating systems, we have chosen to use two
graphics pipelines for each display. The DeskAlign soft-
ware will grab the pixels from the frame buffer of the first
graphics pipeline and push the pixels to the second pipeline
to warp according to the transformations. The frame buffer
of the second pipeline will then hold the result pixels. The
DeskAlign software controls the frame buffer swapping of
the second pipeline and drives the tiled projectors (figure
9). This approach requires multi-headed graphics cards and
uses half of them to drive the projectors.

5

Render
Engine

Frame
Buffer 1

Texture
Memory 1

Render
Engine

Frame
Buffer 2

Texture
Memory 2

Render
Engine

Frame
Buffer 3

Texture
Memory 3

Render
Engine

Frame
Buffer 4

Texture
Memory 4

a)

b)

a)

b)

Quad Graphics Card

Display Display

Chipset

CPU

Memory

Pass 1 (render):
 OS or applications
 render pixels into
 frame buffers 1 & 2

Pass 2 (DeskAlign):
a) Transfer from
 frame buffers 1 & 2
 to texture memories
 3 & 4
b) Warp pixels in
 texture memories
 3 & 4 to frame
 buffers 3 & 4, and
 do buffer swaps

Figure 9: Two pass rendering is used to apply the perspec-
tive transformation

We implemented the DeskAlign system for the Windows
desktop environment. Initially, DeskAlign opens a full-
screen application window on all of the graphics outputs
connected to projectors. It then periodically copies the pix-
els from the frame buffer of the first graphics pipeline to the
texture memory of the second graphics pipeline and then
utilizes the texture mapping hardware to warp the pixels
into the connected frame buffers that drive the projectors.
DeskAlign leverages the DirectX software to perform the
move and warping between the two graphics pipelines.

The main potential for a performance bottleneck is the
frame buffer copy. Our experience shows that as long as the
pixel copy occurs entirely within the graphics card, perfor-
mance will be good. But if the copy has to transfer back-
and-forth through main memory, performance will be un-
acceptable. DirectX can perform on-card pixel copies to
memory locations within the same address space. It is gen-
erally possible to configure quad-headed graphics cards to
use a shared memory address space. For instance Nvidia
quad cards can be set into “span” mode which pairs graph-
ics outputs together.

5. Evaluation and Experiences
Our evaluation goal is to see how well the DeskAlign sys-
tem performs in the Windows desktop environment. We
are interested in two performance goals: how easy is the
DeskAlign system to setup and at what frame rates the sys-

tem can drive the tiled displays in the presence of warping
for automatic alignment.

We choose to measure performance in an underpow-
ered environment. Our test platform is a PC with a 866
MHz Pentium III processor and 256 MB memory, a PNY
NVIDIA Quadro4 400 NVS graphics card and two Com-
paq MP1800 projectors.

The system requires a relatively short set up time of
about 10-15 minutes. Once all hardware and software have
been installed in the PC, the setup involves hooking up the
projectors and a camera, capturing some alignment images,
running the alignment algorithm to generate the projector
transformations and then sending the configuration infor-
mation to the DeskAlign system. The alignment steps take
under five minutes, and most of the setup time is in hooking
up the projectors, booting the computer and configuring the
NVIDIA driver. A final manual adjustment in software can
also be made to get the resulting display as large and square
to the screen as possible. This is done by dragging the cor-
ners of the display generated by DeskAlign to the desired
positions, similar to a technique used in [13]. The resulting
display is aligned with sub-pixel accuracy when using an
inexpensive webcam.

Figure 10: Automatically aligning a two projector display

In order for a PC to run pixel-intensive applications well,
it must be able to deliver real-time frame rates. Our mea-
surements show that when DeskAlign is configured to re-
draw the warped frame buffer 30 times/sec, the system uses
about 10% of the CPU, most of which is due to graphics
pipeline hardware contention. The CPU overhead mini-
mally affects the usability of the system, and a content re-
fresh of 30Hz is more than sufficient. The result is a auto-
matically aligned desktop display which can be driven from
off-axis projectors to ease setup or minimize shadows (fig-
ure 10).

6

The system is able to run all applications and view their
outputs in the Windows desktop environment. Pixel over-
lays are the only special case. Hardware overlays are of-
ten used for the mouse cursor and for video applications.
Overlay pixels are never rendered to the frame buffer, but
rather are combined when the video signal is sent out. These
types of pixel overlays will not be captured or rendered in
DeskAlign, but they can be disabled within the Windows
system. When hardware overlay is disabled, the DeskAlign
system can run all desktop applications transparently.

6. Conclusion
This paper presents a software system that creates an au-
tomatically aligned tiled display from a single PC. We
have designed and implemented a prototype system called
DeskAlign. The system uses the Camera Homography Tree
approach to detect and generate corrective transformations
that can eliminate projector misalignments. We have shown
that this can achieve sub-pixel accuracy with a low-end un-
calibrated camera and that the process takes only a few min-
utes.

We have also shown that coupling two graphics pipelines
on the same graphics card is an effective approach to
achieve warping in the pixel rendering pipeline. The
DeskAlign system can run Windows desktop applications
transparently. It only consumes only about 10% of the CPU
cycles on an underpowered PC platform while delivering
pixels at the frame rate of 30 frames per second.

Acknowledgments

The Princeton Scalable Display Wall project is supported in
part by Department of Energy grant DE-FC02-01ER25456,
by NSF Infrastructure Grant EIA-0101247, by NCSA Grant
ACI-9619019 (through NSF), by Intel Research Council,
and by Intel Technology 2000 equipment grant. Han Chen
is supported in part by a Gordon Wu Fellowship.

References

[1] H. Chen, R. Sukthankar, G. Wallace, and K. Li. Scal-
able alignment of large-format multi-projector dis-
plays using camera homography trees. InProceedings
of IEEE Visualization, 2002.

[2] Y. Chen, H. Chen, D Clark, Z. Liu, G. Wallace, and
K. Li. Software Environments for Cluster-based Dis-
play Systems (2001)

[3] Y. Chen, D. Clark, A. Finkelstein, T. Housel, and
K. Li. Automatic alignment of high-resolution multi-

projector display using an uncalibrated camera. In
Proceedings of IEEE Visualization, 2000.

[4] T. Funkhouser and K. Li. Large format displays.IEEE
Computer Graphics and Applications, 20(4), 2000.
Guest editor introduction to special issue.

[5] P. Heckbert. Fundamentals of Texture Mapping and
Image Warping. Master’s thesis, UCB/CSD 89/516,
CS Division, U.C. Berkeley, 1989

[6] Intel Corporation. Open Source Computer Vision Li-
brary.
http://www.intel.com/research/mrl/research/opencv/.

[7] K. Li, et al. Early Experiences and Challenges in
Building and Using A Scalable Display Wall System.
IEEE Computer Graphics and Applications, vol 20(4),
pp 671-680, 2000.

[8] K. Martin, D. Dawes, and R. Faith. Distributed Multi-
head X design. http://dmx.sourceforge.net/dmx.html

[9] G. Pingali, C. Pinhanez, A. Levas, R. Kjeldsen,
M. Podlaseck, H. Chen, and N. Sukaviriya Steer-
able Interfaces for Pervasive Computing Spaces. In
IEEE International Conference on Pervasive Comput-
ing and Communications - PerCom’03. 2003

[10] R. Raskar, M. Brown, R. Yang, W. Chen, G. Welch,
H. Towles, B. Seales, and H. Fuchs. Multi-projector
displays using camera-based registration. InProceed-
ings of IEEE Visualization, 1999.

[11] R. Raskar, J. van Baar, P. Beardsley, T. Willwacher, S.
Rao, and C. Forlines. iLamps: Geometrically Aware
and Self-Configuring Projectors. InProceedings of
ACM SIGGRAPH, 2003.

[12] T. Richardson, Q. Stafford-Fraser, K. Wood and
A. Hopper. Virtual Network Computing. InIEEE In-
ternet Computing, Vol.2 No.1, Jan/Feb 1998 pp33-38.

[13] R. Sukthankar, R. Stockton, M. Mullin. Smarter
Presentations: Exploiting Homography in Camera-
Projector Systems. InProceedings of International
Conference on Computer Vision, 2001.

[14] R. Surati. A Scalable Self-Calibrating Technology for
Seamless Large-Scale Displays. PhD thesis, Depart-
ment of Electrical Engineering and Computer Sceince,
Massachussetts Institute of Technology, 1999.

[15] R. Yang, D. Gotz, J. Hensley, H. Towles, and
M. Brown. Pixelflex: A reconfigurable multi-projector
display system. InProceedings of IEEE Visualization,
2001.

7

