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Abstract. Fusion energy science, like other science areas in DOE, is becoming increasingly data intensive and 
network distributed. We discuss data management techniques that are essential for scientists making discoveries 
from their simulations and experiments, with special focus on the techniques and support that Fusion Simulation 
Project (FSP) scientists may need. However, the discussion applies to a broader audience since most of the 
fusion SciDAC’s, and FSP proposals include a strong data management component. Simulations on ultra scale 
computing platforms imply an ability to efficiently integrate and network heterogeneous components 
(computational, storage, networks, codes, etc.), and to move large amounts of data over large distances. We 
discuss the workflow categories needed to support such research as well as the automation and other aspects that 
can allow an FSP scientist to focus on the science and spend less time tending information technology. 

1.  Introduction 
From March 2004 – June 2004, the DOE held workshops, headed by Richard Mount, to discuss the 

ASCR/MICS strategic plan for data management [18]. By the end of the workshop it was clear that the 
data management requirements for several application domains were similar in at least three 
application areas: simulations (such as fusion and combustion and astrophysics), 
observation/experimental-driven applications (high-energy physics, fusion), and information-intensive 
applications (such as chemistry, biology, and nanoscience). This paper focuses on several data 
management issues that are necessary for our funded Fusion Simulation Project (FSP).   

It is important to note that the Office of Energy Science (OFES) has a strong data management 
program for current experiments. However, when this data management system was applied to a “real 
3D ” simulation, it proved to be inadequate, not just in its speed, but also in its inflexibility to handle 
the needs of simulation scientists. The time is ripe for OFES to join in collaborative efforts with other 
DOE data management researchers and design a system, which will be scalable to a FSP and 
ultimately to the needs of ITER.  

Simulations are typically executed in batch mode, they are long running, and the computational 
resources they use are located at just a few supercomputing centers. To accelerate the discovery 
process for simulations, a new generation of comprehensive data management solutions will be 
required, which span all areas of data management and visualization.  

The Center for Plasma Edge Simulation is going to build a new integrated predictive plasma edge 
simulation framework. This framework will be applicable to existing magnetic fusion facilities and to 
next-generation burning plasma experiments such as ITER. The multi-scale nature of this problem 
occurs partly because the microturbulence and neoclassical physics time scale must be studied 
kinetically, using the XGC-ET code, while the faster and larger scale MHD modes are more efficiently 
studied using a fluid code, M3D [33]. These codes will be loosely coupled1, and therefore we must 
                                                   
1 Coupling can be defined in many ways. It can be synchronous and asynchronous. It also spans several orders of 
magnitude. For the purposes of this paper we can think of several categories  a) microsecond coupling (e.g., tight 
computational coupling on shared memory and high-performance clusters), b) millisecond couplings (e.g., 
among internet distributed clients and computational nodes), c) seconds to minutes (synchronous and 
asynchronous analyses involving high end applications and human interactions), and d) hours to days (e.g., large 
volume of backup data or asynchronous interactions) 
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focus on large data sets generated from these codes, and the transfer of this data to the collaborators in 
this project. This project is ambitious in both the physics and the enabling sciences. Over twenty 
scientists will be working on different aspects, and good data management techniques will be 
essential. 

The key feature of the data management techniques that we will use in the FSP is that they will be 
driven by the demands of the applications. It is crucial to devise a data management system that is 
easy for the physicists to use and easy to incorporate into their codes and workflows. In order for this 
project to be successful, scientific discovery must be accelerated by using leadership class 
computational solutions and state-of-the-art enabling technologies, e.g., those that reduce overhead of 
the information technology and provide automation of workflows. There are two major steps in our 
discovery system: 

1. During the simulation stage where information must be immediately (often synchronously) 
processed and displayed to enable the user to control the simulation.  

2. During the Validation and Verification stage where users will compare the data from this 
simulation to other simulations and/or experimental data. 

Below we describe the scientific investigation process commonly used by fusion simulation 
scientists to do their science. We then describe the core data management technologies that will be 
used in our Fusion Simulation Process. Finally, we will describe the challenges faced in this project. 

2.  The Scientific Investigation Process 
A fundamental goal of a simulation scientist is to analyze and understand information generated from 
a combination of simulation codes and empirical data, and have these processes lead to an increased 
understanding of the problem being simulated. One can describe the scientific investigation process in 
terms of seven conceptual stages. These same stages can be identified across a wide range of 
disciplines and provide a useful framework for identifying data management challenges [18]. 

Formulation of a hypothesis for explanation of this phenomenon (Idea Stage) leads to formulation 
of requirements for testing it in the Implementation Stage. Regression tests are developed to ensure 
that the modifications do not violate the prior developments. Changes need to be tracked and captured 
in metadata for accountability, backtracking and reproducibility. Implementation often intermixes with 
the Validation/Verification (V&V) Stage. V&V requires scientists to analyze and interpret results, e.g., 
through data transformations, data mining and visualization. This introduces the Interpretation Stage. 
During the Pre-production Stage scientists run parameter surveys and/or sensitivity analyses to define 
the regime of interest and/or define correct scaling. This stage is intermixed with the Interpretation 
Stage. These two stages combined often provide some insight into whether the hypothesis under 
investigation makes sense. Accumulation of bulk raw data happens in the Production Stage, when 
scientists run production experiments and simulations and perform massive observations. The data 
acquired during this phase is generally large and growing. Production and interpretation are 
intermixed as part of the original hypothesis testing. The Assimilation Stage is the final step of the 
scientific process.  Results from all of previous steps are assimilated and reformulation of the original 
hypothesis may be needed. The final output is the dissemination of the knowledge through peer-
reviewed papers, presentations and, increasingly, publication of some portion of the data itself. 

The process can be captured in one or more workflows. We believe that a significant fraction of the 
scientists’ time is spent on interpretation of their data through data analysis and visualization. As the 
data grows, some steps may become prohibitively slow, especially if there is a technology overhead. 
The challenge is to develop appropriate analysis and visualization tools, and automate data acquisition 
and manipulation workflows, that increase total scientific productivity. 
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Figure 1. Illustration of FSP workflow 

3.  Adaptive and Automated Workflows 
The FSP is a sufficiently complex problem, that classic composition and manual execution of its 
workflows represents a serious overhead. Advanced workflow automation is needed. One of the 
proposed FSP workflows is illustrated in Figure 1. The top part of the diagram shows interactions 
among the simulation components running the XGC-ET and the M3D codes. These codes generate 
large volumes of data that are archived by the workflow agents.  The bottom part shows analysis 
components that are invoked automatically by the workflow engine at specific time steps, and that 
feed into the Integrated Data Analysis and Visualization Environment (IDAVE) portal. Summaries of 
the monitored information and the dynamic analyses are also sent to a portal. This information is used 
by the scientists to track workflows progress over the Internet. We now discuss the requirements for 
the FSP workflow support framework. 

3.1.  Workflow Automation. 
Coupling scientific simulations in the manner envisioned in FSP requires coordination of several 
simulations, running on different distributed computing resources, and includes reliable movement of 
data between tightly-coupled components, but also over wide area networks. Also needed is the 
orchestration of intermediate analysis tasks and the automation of dynamic steering of the simulation. 
These requirements warrant a scientific workflow system that can setup, run, control, monitor, and 
track this process. 

Scientific workflows have unique requirements distinct from business workflows. Perhaps the most 
relevant for a FSP is the requirement to run tasks based on some step granularity, and to stream the 
data generated by these steps between components. This is essential for running time-stepped 
simulations. Other important requirements include triggering an action every so many steps (such as 
“checkpoints” that need to be transferred to another computer, archived, or analyzed), and triggering 
an alarm or automatically adjusting the parameters of a simulation based on dynamic analysis of data 
generated by time steps. It is also essential that the workflow system is flexible enough to allow the 
plug-in of existing components, such as simulation programs written by scientists, or specialized 
analysis components, in a standardized fashion. Finally, because real workflows can be quite complex 
it is essential that a scientific workflow system supports workflows that can be composed from other 
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(sub-) workflows.  Since many scientific workflows run for a long time, another important 
requirement is to monitor and track the progress of the workflow, and to produce alarms if the 
progress is stalled or flawed.  

There are a number of general requirements for scientific workflows, [e.g., 
[26][27][24][23][22][19][20].  Some principal scientific workflow requirements include: 
• User Interface: Intuitive design, execution, and monitoring environment for end user 
• Re-use: Component reusability and exchangeability; in particular, ability to dynamically add new 

process nodes and data sets  to a workflow (e.g., using “plug-ins” for Web services and data), or 
change existing ones 

• Data transforms: Extensive and flexible data format transformation support to mediate between 
consecutive processing steps and between the data sources and data sinks (a.k.a. workflow “shims” 
or adapters)  

• Interaction and Batch Modes: Support for user interaction (including process steering) during 
process execution. Ability to monitor an automated processes in real-time, to “background” it and 
retrieve results later, stop/resume options with long-term state memory, etc. 

• Streaming: Support for pipelined concurrent execution of fine & course-grained (loosely coupled) 
workflows 

• Location transparency: Support for both local and distributed computation and data access  
• Interoperability: Ability to incorporate (“wrap”) external applications, e.g. for data access, 

analysis, visualization, and to interoperate with other component-oriented frameworks and systems.   
• Workflow complexity: Ability to handle nested workflows, different computation models, 

data/control flow  
• Optimization: Ability to collect cost and performance data, and based on these, predict cost and 

performance of workflows execution plans. Plan efficiency depends on host resources, bandwidth, 
data transport mechanisms (e.g., SABUL, FastTCP, SRB, etc.) chosen for a particular workflow 
connection, etc. 

• Dependability and Scalability: Workflow engine and resources need to be reliable and scalable; so 
mechanisms for  fault-tolerance, recoverability, and parallel execution of workflows are needed 

• Verification and Validation: Ability to verify and validate constructed workflows, imported 
workflows, and results obtained through an automated workflow 

 
There are several scientific workflow support systems today, many of them evolving 

[22][28][32][31]. The Scientific Data Management (SDM) Center has identified a framework called 
Ptolemy [9] that, with appropriate additions SDM and collaborating projects are developing, provides 
a robust and well suited environment for scientific workflows. In the resulting Kepler system [27], 
workflow components (legacy or new) are plugged in as “actors”. Simple actor pipelines and complex 
workflows (with nested subworkflows and loops) can be graphically defined. Workflow execution is 
orchestrated by one or more “directors”, defining appropriate execution models (process network, 
synchronous dataflow, discrete event, etc.)  Specific actors have been developed for repetitive 
execution of steps, command-line initiation of tasks, file staging and file caching, large scale data 
movement, and notification. Notifications are triggered by conditions in the tasks, and perform an 
action, such posting a message to a website, sending an email, etc. The Kepler system has been 
successfully applied by the SDM Center staff to several applications in the fields of astrophysics, 
fusion, and computational biology and chemistry [BGS+05], and to ecoinformatics and geoinformatics 
applications by other projects contributing to Kepler [29][30].  

For FSP workflows, we will extend Kepler, e.g. with actors for moving data specifically from large 
machines such as Seaborg (the IBM SP at NERSC) running XGC code to the cluster running the M3D 
code. While large data movement elements already exist as part of the Kepler/SPA library [26], FSP 
synchronization needs may require some customization. Similarly, FSP workflows require data 
archival to mass storage (e.g. HPSS). We may take advantage of the Storage Resource Management 
(SRM) technology available at the SDM center or reuse existing Kepler/SRB actors. Actors can also 
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be used to invoke software that analyzes intermediate results, e.g. to classify puncture plots or to 
invoke a monitoring and/or visualization component and display the results on a target system. 

3.2.  Interactive and Autonomic Control of Workflows and Simulations 
The scale, complexity and dynamic nature of the FSP coupled with similar scale and complexity of 
emerging parallel/distributed execution environments requires that these applications be accessed, 
monitored and controlled during execution. This is necessary to ensure correct and efficient execution 
of the simulations, as the choice of algorithms and parameters often depends on the current 
state/requirements of the application and the state of the system, which are not known a priori. For 
example, simulation component behaviors, their compositions and the simulation workflows can no 
longer be statically defined. Further, their performance characteristics can no longer be derived from a 
small synthetic run, as they depend on the state of the simulations and the underlying system. 
Algorithms that worked well at the beginning of the simulation may become suboptimal as the 
solution deviates from the space the algorithm was optimized for or as the execution context changes. 
This requirement presents a new set of deployment and runtime management challenges. 

We are investigating programming and runtime management solutions to support the development 
and deployment of applications (i.e., simulations elements, their interactions and the workflows) that 
can be externally monitored and interactively or autonomically controlled. Further, we are also 
investigating programming and runtime systems that can support efficient and scalable 
implementations of these autonomic simulations. This includes designing control networks to allow 
computational elements to be accessed and managed externally, both interactively and using 
automated policies, to support runtime monitoring, dynamic data injection and simulation control. 
This research is built on our current and prior research efforts and software projects including 
AutoMate/Accord[11][12], and Discover/DIOS [13]. 

3.3.  Collaborative Runtime Monitoring with Elvis 
Scientists desire to monitor a long running simulation in case they want to stop it before completion. 
Stopping an errant run conserves compute and human time. It is useful to monitor at any time and 
from several locations. Providing the information over the Internet facilitates frequent monitoring. A 
scientist can check a run from an Internet browser at work, home, or while traveling. Monitoring is 
typically performed on a laptop or desktop computer on an office or home network. A simulation can 
produce more data than can be monitored. In the FSP, the XGC code will compute profile data that is 
input to the M3D code. The data is produced incrementally as the XGC runs and represents the area 
and variables of interest. A subset of the total output is stored in a portal for monitoring. 

Several scientists at different locations will be interested in an Edge Dynamics run. Monitoring 
over the Internet makes the data instantly available to multiple locations. This enables a basic level of 
data sharing among users. The Elvis system [4], based on the Scivis system [7], provides more 
advanced collaboration by implementing a collaborative whiteboard so users can interactively 
annotate, highlight, and graphically explore the shared data. This improves collaboration and 
communication between remote users. Development has started to make Elvis available for Kepler-
controlled workflows. 

4.  Efficient Data Access /Movement 
The key to the success of any workflow scheme is the ability to move data, so we will focus on data 
access/data transfer issues in some detail. The efficiency of data access is greatly affected by two 
factors: 1) the network path between the point of access (a storage resource or buffer) and the system 
to or from which the data is read or written, and 2) the ability to move data when it is available, rather 
than only at certain predefined points in a computation (most commonly at the beginning and end).  
We will describe two mechanisms which address these issues: 1) Logistical Networking, which 
provides a uniform and ubiquitous model of storage managed on servers known as “depots” that are 
located throughout the network, and 2) Data Streaming techniques that overlap data access and 
transfer with computation and that move data directly from the application to storage locations close to 
its ultimate destination [8]. 
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4.1.  Logistical Networking 
To achieve the kind of global deployment scalability some high-end applications require for data 
management, Logistical Networking (LN) uses a highly generic, best effort storage service, called the 
Internet Backplane Protocol (IBP). The design of IBP is shaped by analogy with the design of IP in 
order to produce a common storage service with similar characteristics. Though it has been 
implemented as an overlay on TCP/IP, it represents the foundational layer of the “network storage 
stack” [1]. Just as IP datagram service is a more abstract service based on link-layer packet delivery, 
so is IBP a more abstract service based on blocks of data (on disk, memory, tape or other media) that 
are managed as “byte arrays.” By masking the details of the local disk storage — fixed block size, 
different failure modes, local addressing schemes — this byte array abstraction allows a uniform IBP 
model to be applied to storage resources generally. The use of IP networking to access IBP storage 
resources creates a globally accessible storage service. 

As the case of IP shows, however, in order to scale globally the service guarantees that IBP offers 
must be weakened, i.e. it must present a “best effort” storage service. First and 
foremost, this means that, by default, IBP storage allocations are time limited. 
When the lease on an IBP allocation expires, the storage resource can be 
reused and all data structures associated with it can be deleted.  Additionally 
an IBP allocation can be refused by a storage resource in response to over-
allocation, much as routers can drop packets; such “admission decisions” can 
be based on both size and duration.  Forcing time limits puts transience into 
storage allocation, giving it some of the fluidity of datagram delivery. More 
importantly, it makes network storage far more sharable, and therefore easier 
to scale up. The semantics of IBP storage allocation also assume that an IBP 

storage resource can be transiently unavailable. Since the user of remote storage resources depends on 
so many uncontrolled, remote variables, it may be necessary to assume that storage can be 
permanently lost. In all cases such weak semantics mean that the level of service must be 
characterized statistically.  

4.2.  PPPL Data Streaming 
Interactive data analysis/remote visualization has been studied over a long period of time. Wide area 
networks, however, exhibit high latencies and widely varying throughput, which hampers remote 
analysis and visualization as well as overall scientific throughput. These latencies and varying 
throughput make interactive visualization impractical because reading and displaying the data can take 
tens of seconds to several minutes for every frame. Also, for high performance simulation 
components, analysis and visualization routines normally require a lower order of processors (M) 
compared to the actual simulation runs (N where M<< N) further arguing for moving data to different 
resources for post-processing. To avoid loss of raw or processed data, the data should be transferred 
fault tolerantly. Thus, the goal of the data streaming is to transfer data from a live simulation running 
in batch on a remote supercomputer (at NERSC/ORNL) over the Wide Area Network (WAN) to a 
local analysis/visualization cluster and with replication for fault-tolerance [3]. To transfer blocks of 
data which are buffered by storing and managing it in buffers allocated at the application layer we use 
the Logistical Backbone as a scalable infrastructure for our application specific Data Grid  [2][3]. 

4.2.1.  Design of the Threaded Buffer for Streaming Data on multiple processors. 
Since large scale simulations execute on a large number of processors (N) which is much greater than 
the data-receiving processors (M) it is advantageous to form groups of processors which group data 
from the simulation into a single entity, and send this data to receiving processors over the WAN to 
PPPL. To handle this mismatch we designate certain data-generating processors as I/O processors and 
failsafe processors which have the capability to allocate buffers and transfer data to the receiving 
processors. These processors are normal processors which take part in the simulation process but they 
are allocated an extra task of transferring the generated data. A processor can also be both an I/O 
processor and failsafe processor. Every processor in the simulation belongs to a particular group 
known as TWRITE group which consists of an I/O processor which allocates an I/O buffer, a failsafe 
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processor which allocates a failsafe buffer and normal simulation processors. Normal simulation 
processors have knowledge of the I/O processor in their group. An I/O processor collects data from 
each of its group members (including the failsafe processor and itself) and copied it into its buffer.  

4.2.2.   Adaptive Buffer and Data Management 
Simulations are based on a series of time steps in which the data is generated after finite computation. 
Data which is generated by the simulation is copied to a buffer allocated in the simulation. The buffer 
has a hard limit/physical limit attached to it. Buffers allocated in the simulation wrap around once they 
reach the hard limit. The data generation rate of a simulation is the amount of data generated per step, 
divided by the time required to perform the step. The network connectivity between the simulation 
processors and the analysis processors places an upper limit on the transfer throughput. The algorithm 
for data management in the buffer tries to dynamically adjust to the data generation rate and the 
available network rate. It does this by sending all the data that has accumulated since the start of the 
last data transfer. If the data generation rate exceeds the transfer rate, more data will be in the buffer. 
In this case, the queue manager will increase the amount of multi-threading in the transfer routines to 
improve throughput. If the transfer rate exceeds the data generation rate, then less data will appear in 
the buffer for the next transfer. All subsequent transfers start as soon as the prior transfer ends. After 
some number of time-steps, if the network is stable and the data generation rate is less than the 
network transfer capacity, then the buffer manager tends to reach equilibrium and match the transfer 
rate to the data generation rate.  

4.2.3.  Failsafe Adaptive Buffer Management 
Failsafe buffer management for buffer overflows when buffers are located on different processors is 
shown in Figure 3. This figure illustrates a simulation which is running on 48 processors; the 
processors are divided into 3 groups which send data out, known as TWRITE groups. Each of these 
groups has an I/O processor and Failsafe processor. The I/O and Failsafe processors are responsible 
for transferring the data in addition to participating in the simulation. The I/O processor has a buffer 
which it uses to transfer data to remote depots at PPPL. The Failsafe processor for every group has a 
buffer which it uses to transfer data to the local depots close to the simulation or is on a local area 
network where the data is being generated. The philosophy for the failsafe buffer is that it data will be 
transferred quickly to local depots compared to remote depots. The failsafe buffers are normally 
smaller in size compared to the I/O buffers.  
 
 
 

I/O 
Buffer  

Remote Depots at PPPL 

Local Depots closer 
to simulation cluster

TWRITE 
group  

Failsafe 
Buffer  

Simulation cluster (16 procs/node)  

Failsafe 
Processor  

I/O 
Processor 

Local Depots 
simulation machine

2) Simulation processors transfer data to I/O 
processor which enqueues data in the I/O buffer 

3) I/O buffer transfers data to PPPL 

1) Create Groups of 16 Processors per TWRITE group  
1 I/O processor and 1 failsafe processor 

5) Failsafe buffer transfers data to local 
depots on simulation machine

4) I/O buffer fills up simulation processor 
transfers data to Failsafe Processor’s buffer  

Figure 3: Data Management using I/O buffer and Failsafe buffer on different processors. 
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Figure 4a (left): Overhead of creating groups, 4b (middle): Failsafe Mechanisms, 4c (right): Router 
statistics at PPPL while streaming data from an 8 hour simulation at ORNL. 
 

4.2.4.  Results 
Figure 4a shows the overhead involved in creating groups of processors when running the simulation 
with various processor sizes at ORNL and at NERSC for various Data generation rates. The data 
streaming approach with grouping imposes minimal overhead on the simulation and is below the 10% 
limit. Figure 4b shows the failsafe mechanisms when streaming data at 350Mbps. The maximum 
network transfer rate from PPPL to ORNL is about 100Mbps, the excess data will have to be either 
written to depots at ORNL located on a local area network, or the local disk. This is observed from the 
graph during the transfer of 4GB of data and as talked about in the previous section. We observe from 
the Figure 4c that we are able to utilize 99% of the bandwidth during the eight hour simulation.  

5.  Integrated Data Analysis and Visualization Environment (IDAVE)  
There are three main areas where visualization arises in our FSP. The first involves real-time 
visualization of profile data produced from the real-time monitoring of the simulations. This data will 
be compact and will be visualized through the runtime monitoring portal. The second involves post 
processing visualization routines. Both the Kinetic-Edge and MHD codes produce periodic data 
dumps that need to be analyzed and visualized. This type of visualization can be done either at the 
scientist’s local workstation or at a more advanced, visualization server, which may have distributed 
processing power, display wall, etc. We will be investigating routines that allow juxtaposition of the 
different datasets produced by the simulations and which will enable comparisons between simulation 
and experimental data. An important component of the visualization will be data mining algorithms 
such as feature detection and activity recognition. The third area involves incorporating automated 
visualization routines within the scientific workflow. This allows the data to be preprocessed and 
enables a more efficient first look at the data as it is being produced. In all of the above categories, the 
proposal will encompass both “nuts and bolts” visualization routines and research into novel 
visualization techniques. Our goal is to provide usable and reliable visualization solutions to the 
physicists, in addition to exploring new methodologies. 

Our goal for data analysis and visualization is to enhance the existing Integrated Data Analysis and 
Visualization Environment (IDAVE) in the fusion community to support robust and accessible 
visualization, to incorporate and tightly integrate visualization into the scientific workflow, and to 
support advanced visualization/ data mining capabilities on the simulation and experimental data 
produced. 

One area of interest is to analyze the scientific workflow and incorporate visualization algorithms 
that can be split between the workflow automation and the IDAVE. For example, a large dataset can 
be preprocessed (as it is output from the simulation and before it is saved to disk) for out-of-core 
isosurfacing [14]. The data can then be accessed from the IDAVE for fast isosurface processing. Many 
other visualization techniques can also be predefined and automatically implemented as part of the 
scientific workflow. These reduced representations can be displayed as part of the profiling and as a 
quick look at the data before a full interactive investigation of the data within the IDAVE. We will 
investigate incorporating visualization and analysis within the workflow and identify those algorithms 
which are suited for this process.  
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6.  Ubiquitous and transparent data sharing 
The scaling of simulations to ever finer granularity and timesteps brings new challenges in managing 
and accessing the data generated by the simulations. First, the volume of the full gyrokinetic edge 
code dataset is expected to reach many terabytes and even petabytes. This requires the data to be 
stored on multiple storage systems, as well as on mass storage systems such as HPSS. There are 
significant data storage and movement problems associated with storing replicas at locations where 
they are likely to be accessed and using highly distributed resources managed by community members 
in order to make the data available on demand [16]. 

Second, accessing a small subset of the data from large datasets, such as requesting a hyper-slab 
(about 1 GB) out of a complete electromagnetic field dataset from the XGC-ET code, should be made 
simple so that scientists can get such data on-demand even from their laptops. A high degree of 
flexibility is required in the mechanisms used for localizing data for visualization and post-processing, 
including application-specific control over dynamic caching. Third, post-processing entire datasets 
repeatedly for analysis and visualization is prohibitive. For example, velocity moments of the plasma 
distribution function such as density and temperature are needed in the post-processing phase and 
should be derived dynamically as the simulation data is generated. Because post-processing is a 
collaborative effort carried out within the distributed research community, the results of analyses 
carried out at a specific site must be redistributed globally for the benefit of the entire community [17]. 
Furthermore, the post-processing and initial visualization can be incorporated into the scientific 
workflow. Lastly, there is a need to keep track of the lineage and semantic information about the 
datasets generated, which is referred to as metadata. The metadata requires a simple but powerful data 
model in order for specific queries to find the desired parts of the datasets. The metadata can also 
include feature-based information for more advanced data mining. 

Our goal is to support transparent data access by combining semantic models with the Logistic 
Networking framework and incorporating visualization and post-processing within the scientific 
workflow. To support transparent data access, it is necessary to present the user with a “logical name 
space” for datasets and files that belong to the datasets. To support ubiquitous data access, it is 
necessary to permit multiple replicas of logical files to exist in the system, so that the most used files 
(so called “hot” files) are replicated in storage systems that are more readily available to the users. 
Such an infrastructure, once in place, will permit not only on-demand access [16], but can also use 
intelligent data placement technology that dynamically manages the replication of files based on usage 
patterns. We do not propose to develop the above technology from scratch. Fortunately, there is a 
body of knowledge on managing large volumes of replicated data in other scientific domains (e.g., 
High Energy Physics and Earth Sciences), where middleware components have been developed to 
support such data management tasks. The main components that we find useful are: 

(1) Metadata catalogs –that allow the description of datasets according to their properties, and upon 
a query based on these properties return the set of logical file names.  

(2) Replica catalogs – that maintain the mapping between logical file names and physical file 
names. The replica catalog keeps the one-to-many mapping and provides indexes for fast search.  

(3) Storage Resource Managers (SRMs) [5] that provide a uniform interface to different storage 
systems, including disk systems or mass storage systems such as HPSS.  SRMs have been used for 
large scale robust file replication in production [6]. 

An important advance that will be undertaken in the execution of this project is the integration of 
the replica management and data transfer technologies currently in use at the SDM Center with 
Logistical Networking technologies designed to take advantage of highly distributed resources that are 
not located at traditional computation or data centers. This synthesis would represent a new approach 
to flexible data storage and management, creating an interoperable framework for managing the 
location and transfer of data stored in the network. By generalizing the concept of replica management 
as implemented in current tools, we will enable many new methods of working with large datasets. 

It must be possible to obtain a subset of a large dataset either through an advance request to the 
replica manager or through dynamic mechanisms such as caching that use application hints and 
lightweight resources available only at runtime. SRMs can be used to bring the files to a site that will 
perform the data extraction before providing it to the scientist. Shared storage resources can be 

518



 
 
 
 
 
 

managed by a combination of SRMs and Logistical Networking depots serving different classes of 
application needs. Using these tools, dynamic data movement for the purpose of performance 
optimization will be transparent to the end user. 

7.  Conclusions 
A successful Fusion Simulation Project running on leadership class computers ultimately requires a 
very strong data management component. As codes become mature, and are optimized on leadership 
class computers, the bottleneck in the scientific investigation process will no longer be the runtime of 
the simulation on the computer, but rather the other steps in the process, in particular the workflow 
automation/data streaming technologies.  

Data management techniques span six important areas which were highlighted in the 2004 DOE 
Data management workshop: 

• Workflow, data flow, data transformation 
• Metadata, data description, logical organization 
• Efficient access and queries, data integration 
• Distributed data management, data movement, networks 
• Storage and caching 
• Data analysis, visualization, and integrated environment. 

In this paper, we highlighted several parts from this list. It is important to keep in mind that as the 
number of people working on the code grows; strong data management techniques become a 
necessity, and not a luxury. It is vital for the various offices in the DOE community to support a strong 
data management effort, and to be able to link this effort with efforts in related technologies, such as 
visualization. 
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