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Berkeley-ISICLES (BISICLES)

Q DOE ISICLES-funded project to develop a scalable adaptive mesh
refinement (AMR) ice sheet model/dycore

= Local refinement of computational mesh to improve accuracy

Q Use Chombo AMR framework to support block-structured AMR
= Support for AMR discretizations
= Scalable solvers
= Developed at LBNL
= DOE ASCR supported (FASTMath)

O Interface to CISM (and CESM) as an
alternate dycore

Q Collaboration with LANL and Bristol (U.K.)

Q Continuation in SciDAC-funded PISCEES effort
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Why is this useful? (another BISICLE for another fish?)

Rignot et al., Science, 333 (2011)
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Ice sheets -- Localized regions where
high resolution needed to accurately
resolve ice-sheet dynamics (500 m or
better at grounding lines)

Antarctica is really big - too big to
resolve at that level of resolution.

Large regions where such fine
resolution is unnecessary (e.g. East
Antarctica)

Well-suited for adaptive mesh
refinement (AMR)

Problems still large: need good
parallel efficiency

Dominated by nonlinear coupled
elliptic system for ice velocity solve:
good linear and nonlinear solvers
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“L1L2” Model (Schoof and Hindmarsh, 2010).

Q Uses asymptotic structure of full Stokes system to construct a
higher-order approximation
|H]

= Expansion in €= = and A= [Tshear] (ratio of shear & normal stresses)
[L] [Thormaitl

» Large A: shear-dominated flow
« Small A: sliding-dominated flow

= Computing velocity to 0(e%) only requires t to 0(&)

O Computationally much less expensive -- enables fully 2D
vertically integrated discretizations. (can reconstruct 3d)

QO Similar formal accuracy to Blatter-Pattyn 0(&?)
= Recovers proper fast- and slow-sliding limits:
« SIA (1K A<¢e /n)-- accurate to 0(e24"2)
« SSA (¢ <1 <1) - accurate to 0(&%)
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“L1L2” Model (schoof and Hindmarsh, 2010), cont.

A Can construct a computationally efficient scheme:

1. Approximate constitutive relation relating grad(u) and stress field T with
one relating grad(ul|,=p), vertical shear stresses t,, and t,., given by the
SIA / lubrication approximation and other components 7., (x,y, z),

Ty (X,Y,2), etC

2. leads to an effective viscosity u(x,y, z) which depends only on grad(ul,-p)
and grad(z,), ice thickness, etc

3. Momentum equation can then be integrated vertically, giving a nonlinear,
2D, elliptic equation for u|,—p(x,y)

4. u(x,y,z) can be reconstructed from u|,—;(x,y)
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Temporal Stability

Update equation for H: Z—Z + V-(uH) =S
O “looks” like hyperbolic advection equation (explicit scheme,

Courant stability -- At « Ax)
0 Velocity field has VH piece - diffusion equation for H (At o« Ax?!)

a Strategy (Cornford) - try to factor out diffusive flux and
discretize as an advection-diffusion equation:

QO F=1uH-= advective T Fdiffusive
Q  Faiffusive = —D VH
O Now solve: 2—7 + V- ﬁadvecme =V-(DVH)+ S

0  Advective fluxes: explicit update using unsplit 2"d Order PPM scheme
O Diffusive fluxes: implicit update (Backward Euler for now)

=
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Temporal Stability (cont)

O Test case based on ISMIP-HOM A geometry
Q Ax = 25 km, AtCFL = 5 a

Explicit advance Semi-implicit advance
1600 - 1600
A
1400 At=0.1252 1400
1200 1200
£ 1000 - £ 1000
I / I
800 — ; 800 —
\ F,
time (a) i i
600 4 — 0 600
— 0625 s’
125
400 | | | 400 | | |
0 50 100 150 0 50 100 150
® (km) X (km)

O Unfortunately, still run into stability issues finer than Ax < 0.5 km!
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Modified “L1L2” Model (ssA%)

Q Use this result to construct a computationally efficient scheme:

1.

4.
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Approximate constitutive relation relating grad(u) and stress field T with
one relating grad(ul|,=p), vertical shear stresses t,, and t,., given by the
SIA / lubrication approximation and other components t,.,(x,vy, z),

Ty (X,Y,2), etc

leads to an effective viscosity u(x,y, z) which depends only on grad(u|,-p)
and grad(z,), ice thickness, etc

Momentum equation can then be integrated vertically, giving a nonlinear,
2D, elliptic equation for u|,—p(x,y)

<M

Use u(x,y,z) = ul,—,(x,y) (neglect vertical shear in flux velocity)
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BISICLES Results - MISMIP3D

100

100

100

Experiment P/5R: I
(Pattyn et al (2011)

O Begin with steady-state (equilibrium) Il
grounding line. Speed. m/yr |

O Add Gaussian slippery spot perturbation I 2250
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at center of grounding line b
Ice velocity increases, GL advances.
After 100 years, remove perturbation.

O Grounding line should return to original It
steady state. é
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O  Figures show AMR calculation: I=

S M _:
= Ax,= 6.5km base mesh, _ | _' 'LT%L e . % ; i
= 5 levels of refinement = L IEE T e | i il
= Finest mesh Ax,= 0.195km. ¢ _ nj%@ ﬁﬁ .
= t=0, 1,50, 101, 120, 200 yr &~ AL T il
O Boxes show patches of refined mesh. A SV I A ]
O GL positions match Elmer (full-Stokes) o w0 w0 w0 s (m) (m)

X (km)
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MISMIP3D (cont): L1L2 (SSA*) Spatial Resolution

A¥in=6.25 km A¥min=0.391 km

/_F

570

560
|

|

k)
5 550
k

—
h . -
=
% v v v
o O AXrin = 0.185 km AXmin= 0.0977 km
i
mid-stream, advancing
—— mid-stream, retraating
b —— boundary, advancing
o —— boundary, refreating
=

540

530

] 20 40 &0 g0 100 0 20 40 60 a0 100

t {years) t (years)

 Very fine (~200 m) resolution needed to achieve reversability!
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MISMIP3D: SSA vs. “L1L2” or “SSA*”

SSA, Ax-=100 m SSA*, Ax" =100 m

640 — 560 —
630 — 550 —
€ 620 - T 540 -
X X
= > =
2 610 — 2 530 —
600 — 520 — mid-stream, perturbed
= mid-stream, returning
boundary, perturbed
590 — 510 — = boundary, returning
I I I I I I I I
0 20 40 60 80 100 0 20 40 60 80 100

t (years) t (years)

* Direct comparison of SSA vs. SSA*
* (fully resolved spatially, same numerics, etc)
* Note difference in steady-state GL positions
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Simple Rheology/Damage model

Viscosity Coefficient /iscosity Coefficient Viscosity Coefficient
10.00 . 10.00 10.00
lU.'IUUU lU.lUUU -
Pine Island Glacier Filchner-Ronne Ice Shelf Ross Ice Shelf

 Solve control problem for ice initial condition

* Include new parameter ¢ which multiplies viscosity
* ¢ <1 (blue) = softening

* ¢ > 1 (red) = hardening
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BISICLES Results - Ice2Sea Amundsen Sea

Q Study of effects of warm-water incursion into Amundsen Sea.

Q Results from Payne et al, (2012), submitted.

O Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction
and damage coefficients to match Joughin 2010 velocity.

Q Background SMB and basal melt rate chosen for initial equilibrium.

O SMB held fixed.

Q Perturbations in the form of additional subshelf melting:
= derived from FESOM circumpolar deep water

= ~5m/ain 21t Century,
= ~25m/ain 22" Century.
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Ice2Sea Amundsen (cont)

Amundsen Sea Ice Sheet Simulation

One possible climate scenario (Payne et al.)
simulated using SciDAC-funded BISICLES code
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Ice2Sea Amundsen (cont)

SLR vs. year, Amundsen

Q Need at least 2 km Sea Sector
resolution to get any
measurable S 0- 0o _
contribution to SLR. B - 10 E
% — 20 §
Q Appears to converge at § ~10 30 _
first-order in Ax £ ok Y
=5 o
50 - 250 m — 60
| | I |

2000 2050 2100 2150 2200

time (years)
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Ice2Sea Amundsen (cont) - Thwaites?

* In 400 year run, Thwaites == STy
destabilizes as well. - | - ——

« Same forcing as previous
run, subshelf melting held
constant past 2200.

 As discussed by Alley and
Parizek (Tuesday morning),
Thwaites is very stable,
until it tips.
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Antarctica (Ice2Sea)

« Refinement based on Laplacian(velocity), grounding lines
* 5 km base mesh with 3 levels of refinement
« base level (5 km): 409,600 cells (100% of domain)
« level 1 (2.5km): 370,112 cells (22.5% of domain)
 Level 2 (1.25 km): 955,072 cells (14.6% of domain)
 Level 3 (625 m): 2,065,536 cells (7.88% of domain)

Mag(Velocity) Mesh Resolution
3000. e
' 228.0 ) lzs km
-17.32 W R . 1.25 km
' 1316 0.625 km
-0.1000
Max: 5381.

Min: 0.000
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Embedded Boundary (EB) for Grounding Lines
» Embedded Boundary (EBChombo)

 Currently force GL and ice margins to cell faces

%
.

SN
L

.

 “Stair-step” discretization

Known to be inadequate from experience with
Stefan Problem in other contexts!

2

* Use Chombo Embedded-boundary support to
improve discretization of GL’s and ice margins.

 Can solve as a Stefan Problem, with appropriate
jump conditions enforced at grounding line.
(as in Schoof, 2007)
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Conclusions

Q Fine (sub 1-km) resolution required to get grounding lines right
O AMR is a natural fit for this problem

Q Split advective/diffusive approach to temporal evolution looked
promising, but was eventually insufficient.

QO “SSA*” modified L1L2 approach improves temporal stability,
appears to be “good enough” for grounding lines and fast-flowing
ice streams and shelves.

O Embedded boundary approach is promising
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Extras
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BISICLES - Next steps

QO More work with linear and nonlinear velocity solves.

= PETSc/AMG linear solvers look promising (in progress)

Revisit semi-implicit time-discretization for stability, accuracy.
Finish coupling with existing Glimmer-CISM code and CESM
Full-Stokes for grounding lines?

Embedded-boundary discretizations for GL’s and margins.
Performance/scaling optimization and autotuning.

Refinement in time?
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Parallel scaling, Antarctica benchmark

Strong Scaling of Antarctica Test Prblem

hopper.nersc.gov

| LI |
o—e Measured
10000 - —— Ideal scaling B
—_
Q
Q
75]
N
Q
£
=
-
Q
S 1000 |~
o -
=
=
100 | L1 | | | | | | | | |

10 100 1000
Hopper cores

(Preliminary scaling result — includes 1/O and serialized initialization)
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MISMIP3D: Mesh resolution

Q Plot shows grounding line

position x.; at y = 50km vs. ?
time for different spatial
resolutions. o r
Q0 Ax=0.195km - 6.25km £ |
E . \_\_\_\_
O Appears to require finer than ~
1 km mesh to resolve -
dynamics
Finest resglution (km)
-— 625 ——|156 — 0.391
o — 312 e |(.78] e 0,195
aQ Converges as O(Ax) S | | |

0 50 100 150 200

(as expected)

time, t (years)
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BISICLES: Models and Approximations

(1-n)

Physics: Non-Newtonian viscous flow: u(e2,T) = A(T)(e2) 2
a Full-Stokes

= Best fidelity to ice sheet dynamics
= Computationally expensive (full 3D coupled nonlinear elliptic equations)

O Approximate Stokes
= Use scaling arguments to produce simpler set of equations

= Common expansion is in ratio of vertical to horizontal length scales (e = %)

= E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(&?)
= Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

QO Depth-integrated
= “Shallow Ice” and “Shallow-Shelf” approximations (accurate to O(g) )
= Special case of approximate Stokes with 2D equation set
= Easiest to work with computationally, generally less accurate
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Block-Structured Local Refinement

Level M

O Refined regions are organized into rectangular > oazsor

patches. * oo

05| ) o
0.0r
-0.5+

-1'07_|H.‘\ L | I
1.0 0.5 0.0 0.5 1.0

0.3;—
0.2f
Q Algorithmic advantages: 0.1}
» Build on mature structured-grid discretization 0.0
methods. 0.1}
= Low overhead due to irregular data structures, 0.2}
relative to single structured-grid algorithm. 03[

02 03 04 05 06 07 08
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Linear Solvers - GAMG vs. Geometric MG

SeaRise/lce2Sea Antarctica lce velocity solve

le+08 . .
MG-JFMN K outer
MG-JFMNK Inner
1e+06 petsc
petsc
10000 F
. 100
]
5
W 1
@
&
— 001
0.0001
le-06
1e-08 L L
0 5 10 15 20 25 30

outer iteration
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BISICLES Results - Pine Island Glacier

aQ Cornford, et al, JCP (2011, submitted)

Q PIG configuration from LeBrocq:

= Bathymetry: combined Timmerman (2010), Jenkins (2010), Nitsche (2007)
= AGASEA thickness

1
= |sothermal ice, A=4.0x 10717 Pa"3 m~1/3q
= Basal friction chosen to roughly agree with Joughin (2010) velocities

a Specify melt rate under shelf:

0 H < 50m
= M, = Z(H=50) 50 <H <500m m/a
9
50 H > 500m

QO Constant surface flux = 0.3 m/a
Q Evolve problem - refined meshes follow the grounding line.
Q Calving model and marine boundary condition at calving front
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PIG (cont)

Psaudacolor
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PIG, cont

o o \ !
8 & ] §
z g
2 rgl Z rgl rg,
n gl =
3 - i 3 - B
~ | [
g B T ke E rgl B
> = r/ S - ; '
S = S B
1 oot Tia
N 7 1 H
) = )
3 e N S H
iIi'\- I
b |
| | L
Initial Condition Solution after 30 years

Coloring is ice velocity, I, is the grounding line. Superscripts denote number
of refinements. Note resolution-dependence of I,
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Amundsen Sea Sector

DB: u250 1500.r100.3lev

* Regional Model

* Heavy subshelf melting drives
retreat (up to 100 m/a)

* Melt rate function of depth
(strongest melting near GL)

* 4 km base mesh

« 3 levels of refinement
(2km, 1km, 500m)

* Courtesy of Steph Cornford

100 200 300 400

ussr: gg!
Mon n 18 14:27:20 2012
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Filchner-Ronne/Ross

DB: minthck250.maxthck500.rateb.2le
Cycle: 0 Time:0

« Light melting (< 5 m/a) R

* 5 km base resolution

« 2 refinement levels
(2.5km, 1.25km)

« “few hours” for 32 processors
to evolve for 50 yrs

* Courtesy of Steph Cornford

0.2500
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Interface with Glimmer-CISM

Q Glimmer-CISM has coupler to CESM, additional physics
= Well-documented and widely accepted

A Our approach - couple to Glimmer-CISM code as an
alternate “dynamical core”
= Allows leveraging existing Glimmer-CISM capabilities
= Use the same coupler to CESM

» BISICLES code sets up within Glimmer-CISM and maintains its
own storage, etc.

= Communicates through defined interface layer

= Instant access to a wide variety of test problems

» Interface development almost complete

= Part of larger alternative “dycore” discussion for Glimmer-CISM
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Models and Approximations

QO Full-Stokes

= Best fidelity to ice sheet dynamics
= Computationally expensive (full 3D coupled nonlinear elliptic equations)

Q Approximate Stokes

= Use scaling arguments to produce simpler set of equations

= Common expansion is in ratio of vertical to horizontal length scales (¢ = [—}ll])

= E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(&?)
= Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)

Q Depth-integrated

= Special case of approximate Stokes with 2D equation set (“Shelfy-stream”)
= Easiest to work with computationally
= Generally less accurate
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“L1L2” Model (Schoof and Hindmarsh, 2010)

Q Asymptotic expansion in 2 flow parameters:

" € -- ratio of length scales %
® ) - ratio of shear to normal stresses

[Tshear]

[Tnormal]

 Large A: shear-dominated flow
« Small A: sliding-dominated flow
0 Blatter-Pattyn approximates full-Stokes to 0(¢?) for all A regimes

QO Asymptotic expansion: (e.g. u(x,z) = ug + cu; + 0(&2) )
» | eading order velocity term: uy, = uy(x) (no vertical dependence)

= Don’t need shear stresses to 0(e%) to compute velocity to 0(&?)
= Provides basis for depth-integrated approach
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“L1L2” Model (Schoof and Hindmarsh, 2010).

Q Uses asymptotic structure of full Stokes system to construct a
higher-order approximation

» Expansion in ¢ -- ratio of length scales %

= Computing velocity to 0(&?) only requires T to 0(¢)

O Computationally much less expensive -- enables fully 2D
vertically integrated discretizations. (can reconstruct 3d)

a Similar formal accuracy to Blatter-Pattyn 0(&?)
= Recovers proper fast- and slow-sliding limits:
* SIA (1 < A<¢ /n)-- accurate to 0(e2A™2)
« SSA (¢ <1<1) - accurate to 0(&?)
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BISICLES results - Grounding line study

O Bedrock topography based on Katz and 400
Worster (2010) -

QO Evolve initially uniform-thickness ice to__
=
steady state < 200

Repeatedly add refinement and evolve 19
to steady state

(]

. . . 0
O G.L. advances with finer resolution .
O Appear to need better than 1 km 400
~ 5000 h
& 4000 711 007
33000 (] 200 4
932000 - / / -
- Y 7 100 — P
?‘%1000 _ . JISADA W 0.781 %\e o SR
s — === il
§, 0 — us PE—— 0 -n | | roun Imq lin \l \
‘;—1000 — = T~ 800 1000 1200 1400 1600
I I I
800 1000 1200 1400 1600 X (km)
X (km)
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Discretizations

O Baseline model is the one used in
Glimmer-CISM:

= Logically-rectangular grid, obtained
from a time-dependent uniform

mapping.
= 2D equation for ice thickness, coupled with ﬁ —b—-—V--Hi{

2D steady elliptic equation for the horizontal ot

velocity components. The vertical velocity is

obtained from the assumption of

incompressibility. ° ﬂ — £ VT - u-VT + 9 _ Wﬁ
= Advection-diffusion equation for temperature. & pc pC 0L

O Use of Finite-volume discretizations (vs. Finite-difference discretizations)
simplifies implementation of local refinement.

QO Software implementation based on constructing and extending existing solvers
using the Chombo libraries.
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Nonlinear Solvers

O Most computational effort spent in nonlinear ice
velocity solve.
A Picard iteration:
* Robust
« Simple to implement
« Slow (but steady) convergence
 Jacobian-free Newton-Krylov (JFNK):
* More complex to implement
« Works best with decent initial guess
« Rapid convergence
« Well-suited for Chombo AMR elliptic solvers
 Approach - use Picard iteration initially, then switch to
JFNK when convergence slows
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Nonlinear Solvers (cont)

Nonlinear Solver Convergence

10000 — JFNK
= Picard
5 100
2 1
q
v
=
_2. 0.01
0.0001
1e-06, 5 10 15 20

Nonlinear solver iteration
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BISICLES Results

Q lce-stream Simulation
[based on Pattyn et al (2008)]: x-velocity

-0.02467

= High resolution is required to - 0.01851
. - 0.01234

accurately resolve the ice stream. o o
= AMR simulation allows high Max: 0.02469.

Min: 1.237e-05

resolution around the ice stream
at a fraction of the cost of a
uniformly refined mesh.

Number of cells updated CPU Times for AMR vs. non-AMR
Scaled by highest-resolution run Scaled by highest-resolution run
1 T T T 1 T T
+—e AMR: dx=1/64 base grid 4 r o—e AMR: dx=1/64 base grid
=—a Single-level =—a Single-level

08— — 08— .
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S 04 — 304 — -—-—- — — o —
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=
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0 —— 1 0
0 500 1000 0
Effective Resolution (1/dx) Effective resolution (1/dx)
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Numerical Accuracy and Convergence

Richardson Convergence of x-velocity

L1-norm
(siugle—level) C L T T T T UL | ]
10: T T T T T T T T T LA R | J C J
E 3 F ®=—a single-level 1
i m—a L1(error) ] i B—8 nRef=2 )
L +—& L2(error) il r =6 nRef=4 1
@& max(error) Avds. NRf = (2.2)
1= — 2nd Order = 0.1F E
L 1 g L i
g o1 E e F |
= E 3 b
o F ] 001 =
001 E C ]
I 1 0.001 —,
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E 3 C 1 11 ‘ 1 1 1 1 1 Il 11 | ]
100 ] 1000
Base-gnid 1/h
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I m—a nRef=2 ) L &= single-level i
F = nRef=4 q | B—8 nRef=2 |
A nRef= (2.2) e "Rgf 4
01k - Am—d nRef=(2,2)
E ] 0.1p E
5 | ' s | ]
= B i e r 1
5 5
0.01 ? E 001 3
0001 E 0,001 -
C 1 1 1 1 | - | 1 1 1 1 1 | - | ] : | | L | L L | L | :

100 1000

x-velocity AMR Convergence

Base-grid 1/h 100 Base-grid 1/h 1000
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Continental-scale: Antarctica

* lcelsea geometry
« Temperature field from Pattyn and Gladstone
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