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Berkeley-ISICLES (BISICLES) 

 DOE ISICLES-funded project to develop a scalable adaptive mesh 

refinement (AMR) ice sheet model/dycore 

 Local refinement of computational mesh to improve accuracy 

 Use Chombo AMR framework to support block-structured AMR 

 Support for AMR discretizations 

 Scalable solvers 

 Developed at LBNL 

 DOE ASCR supported (FASTMath) 

 Interface to CISM (and CESM) as an  

      alternate dycore 

 Collaboration with LANL and Bristol (U.K.) 

 Continuation in SciDAC-funded PISCEES effort 

 

 



Why is this useful? (another BISICLE for another fish?) 

 Ice sheets -- Localized regions where 

high resolution needed to accurately 

resolve ice-sheet dynamics (500 m or 

better at grounding lines) 

 Antarctica is really big – too big to 

resolve at that level of resolution. 

 Large regions where such fine 

resolution is unnecessary (e.g. East 

Antarctica) 

 Well-suited for adaptive mesh 

refinement (AMR) 

 Problems still large: need good 

parallel efficiency 

 Dominated by nonlinear coupled 

elliptic system for ice velocity solve: 

good linear and nonlinear solvers  

 

 

 

 

Rignot et al., Science, 333 (2011) 



“L1L2” Model (Schoof and Hindmarsh, 2010). 

 Uses asymptotic structure of full Stokes system to construct a 

higher-order approximation  

 Expansion in = 
𝐻

𝐿
 and l= 

𝜏𝑠ℎ𝑒𝑎𝑟

𝜏𝑛𝑜𝑟𝑚𝑎𝑙
 (ratio of shear & normal stresses) 

• Large l: shear-dominated flow 

• Small l: sliding-dominated flow 

 Computing velocity to 𝑂(𝜀2) only requires τ to 𝑂(𝜀) 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. (can reconstruct 3d) 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 

 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

 Can construct a computationally efficient scheme: 

 

1. Approximate constitutive relation relating 𝑔𝑟𝑎𝑑 𝑢  and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏), vertical shear stresses 𝜏𝑥𝑧 and 𝜏𝑥𝑧 given by the 

SIA / lubrication approximation and other components  𝜏𝑥𝑥 𝑥, 𝑦, 𝑧 ,
𝜏𝑥𝑦 𝑥, 𝑦, 𝑧 , etc 

 

2. leads to an effective viscosity 𝜇(𝑥, 𝑦, 𝑧) which depends only on 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏) 
and 𝑔𝑟𝑎𝑑 𝑧𝑠 , ice thickness, etc  

 

3. Momentum equation can then be integrated vertically, giving a nonlinear, 

2D, elliptic equation for 𝑢 𝑧=𝑏(𝑥, 𝑦)  

 

4.  𝑢(𝑥, 𝑦, 𝑧) can be reconstructed from 𝑢 𝑧=𝑏(𝑥, 𝑦) 

 

 



Temporal Stability 

Update equation for H:  
𝜕𝐻

𝜕𝑡
+  𝛻 ∙ 𝑢𝐻 = 𝑆 

 “looks” like hyperbolic advection equation (explicit scheme, 

Courant stability -- ∆𝑡 ∝  ∆𝑥) 

 Velocity field has 𝛻𝐻 piece – diffusion equation for H (∆𝑡 ∝  ∆𝑥2!) 

 

 Strategy (Cornford) – try to factor out diffusive flux and 

discretize as an advection-diffusion equation: 

 𝐹 =  𝑢𝐻 =  𝐹 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 + 𝐹 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 

 𝐹 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 = −𝐷 𝛻𝐻 

 Now solve: 
𝜕𝐻

𝜕𝑡
+  𝛻 ∙ 𝐹 𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 =  𝛻 ∙ (𝐷 𝛻𝐻) + 𝑆 

 Advective fluxes: explicit update using unsplit 2nd Order PPM scheme 

 Diffusive fluxes: implicit update (Backward Euler for now) 

 

 



Temporal Stability (cont) 

 Test case based on ISMIP-HOM A geometry 

 ∆𝑥 = 2.5 𝑘𝑚, ∆𝑡𝐶𝐹𝐿 = 5 a 

 

 

 

 

 

 

 

 

 

 

 

 Unfortunately, still run into stability issues finer than ∆𝒙 < 𝟎. 𝟓 𝒌𝒎! 

 

Explicit advance Semi-implicit advance 



Modified “L1L2” Model (SSA*) 

 Use this result to construct a computationally efficient scheme: 

1. Approximate constitutive relation relating 𝑔𝑟𝑎𝑑 𝑢  and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏), vertical shear stresses 𝜏𝑥𝑧 and 𝜏𝑥𝑧 given by the 

SIA / lubrication approximation and other components  𝜏𝑥𝑥 𝑥, 𝑦, 𝑧 ,
𝜏𝑥𝑦 𝑥, 𝑦, 𝑧 , etc 

 

2. leads to an effective viscosity 𝜇(𝑥, 𝑦, 𝑧) which depends only on 𝑔𝑟𝑎𝑑(𝑢 𝑧=𝑏) 
and 𝑔𝑟𝑎𝑑 𝑧𝑠 , ice thickness, etc  

 

3. Momentum equation can then be integrated vertically, giving a nonlinear, 

2D, elliptic equation for 𝑢 𝑧=𝑏(𝑥, 𝑦)  

 

4.  𝑢(𝑥, 𝑦, 𝑧) can be reconstructed from 𝑢 𝑧=𝑏(𝑥, 𝑦) 

 

4. Use  𝑢(𝑥, 𝑦, 𝑧) = 𝑢 𝑧=𝑏(𝑥, 𝑦)  (neglect vertical shear in flux velocity) 

 

 

 



BISICLES Results - MISMIP3D 

 Begin with steady-state (equilibrium) 

grounding line. 

 Add Gaussian slippery spot perturbation 

at center of grounding line 

 Ice velocity increases, GL advances. 

 After 100 years, remove perturbation. 

 Grounding line should return to original 

steady state. 

 Figures show AMR calculation:  

 ∆𝑥0= 6.5𝑘𝑚 base mesh,  

 5 levels of refinement 

 Finest mesh ∆𝑥4= 0.195𝑘𝑚. 

 t = 0, 1, 50, 101, 120, 200 yr 

 Boxes show patches of refined mesh. 

 GL positions match Elmer (full-Stokes) 

 

Experiment P75R:   
(Pattyn et al (2011) 



MISMIP3D (cont): L1L2 (SSA*) Spatial Resolution 

• Very fine (~200 m) resolution needed to achieve reversability! 

 



MISMIP3D: SSA vs. “L1L2” or “SSA*” 

• Direct comparison of SSA vs. SSA*  
• (fully resolved spatially, same numerics, etc) 

• Note difference in steady-state GL positions 



Simple Rheology/Damage model 

Pine Island Glacier Filchner-Ronne Ice Shelf Ross Ice Shelf 

• Solve control problem for ice initial condition 

• Include new parameter 𝜑 which multiplies viscosity 

• 𝜑 < 1 (blue) = softening 

• 𝜑 > 1 (red) = hardening 

 



BISICLES Results – Ice2Sea Amundsen Sea 

 Study of effects of warm-water incursion into Amundsen Sea. 

 Results from Payne et al, (2012), submitted.  

 Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction 

and damage coefficients to match Joughin 2010 velocity. 

 Background SMB and basal melt rate chosen for initial equilibrium. 

 SMB held fixed. 

 Perturbations in the form of additional subshelf melting:  

 derived from FESOM circumpolar deep water  

 ~5 m/a in 21st Century,   

 ~25 m/a in 22nd Century.  



Ice2Sea Amundsen (cont) 



Ice2Sea Amundsen (cont) 

 

 Need at least 2 km 

resolution to get any 

measurable 

contribution to SLR. 

 

 Appears to converge at 

first-order in ∆x 

SLR vs. year, Amundsen 
Sea Sector 



Ice2Sea Amundsen (cont) – Thwaites? 

• In 400 year run, Thwaites 

destabilizes as well. 

 

• Same forcing as previous 

run, subshelf melting held 

constant past 2200. 

 

• As discussed by Alley and 

Parizek (Tuesday morning), 

Thwaites is very stable, 

until it tips. 

 

 



Antarctica (Ice2Sea)  

• Refinement based on Laplacian(velocity), grounding lines 

• 5 km base mesh with 3 levels of refinement  

• base level (5 km): 409,600 cells (100% of domain) 

• level 1 (2.5 km):  370,112 cells (22.5% of domain) 

• Level 2 (1.25 km): 955,072 cells (14.6% of domain) 

• Level 3 (625 m):  2,065,536 cells (7.88% of domain) 

 

 

 

 

 

 



Embedded Boundary (EB) for Grounding Lines 

 Embedded Boundary (EBChombo) 

• Currently force GL and ice margins to cell faces 

 

• “Stair-step” discretization  

Known to be inadequate from experience with  

Stefan Problem in other contexts! 

 

• Use Chombo Embedded-boundary support to  

improve discretization of GL’s and ice margins. 

 

• Can solve as a Stefan Problem, with appropriate 

jump conditions enforced at grounding line.  

(as in Schoof, 2007)  

 

 

 

 



Conclusions 

 Fine (sub 1-km) resolution required to get grounding lines right 

 

 AMR is a natural fit for this problem 

 

 Split advective/diffusive approach to temporal evolution looked 

promising, but was eventually insufficient. 

 

 “SSA*” modified L1L2 approach improves temporal stability, 

appears to be “good enough” for grounding lines and fast-flowing 

ice streams and shelves. 

 

 Embedded boundary approach is promising 
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Extras 





BISICLES – Next steps 

 More work with linear and nonlinear velocity solves. 

 PETSc/AMG linear solvers look promising (in progress) 

 Revisit semi-implicit time-discretization for stability, accuracy. 

 Finish coupling with existing Glimmer-CISM code and CESM 

 Full-Stokes for grounding lines? 

 Embedded-boundary discretizations for GL’s and margins. 

 Performance/scaling optimization and autotuning.  

 Refinement in time? 



Parallel scaling, Antarctica benchmark 

(Preliminary scaling result – includes I/O and serialized initialization) 



MISMIP3D: Mesh resolution 

 Plot shows grounding line 

position 𝑥𝐺𝐿 at 𝑦 = 50𝑘𝑚 vs. 

time for different spatial 

resolutions. 

 

 ∆𝒙 = 𝟎. 𝟏𝟗𝟓𝒌𝒎 → 𝟔. 𝟐𝟓 𝒌𝒎 

 

 Appears to require finer than 

1 km mesh to resolve 

dynamics 

 

 Converges as O(∆𝑥)            
(as expected) 



BISICLES: Models and Approximations  

Physics: Non-Newtonian viscous flow: 𝜇(𝜖2 ,T) = A(T)(𝜖2 )
(1−𝑛)

2  

 Full-Stokes  

 Best fidelity to ice sheet dynamics 

 Computationally expensive (full 3D coupled nonlinear elliptic equations) 

 Approximate Stokes 

 Use scaling arguments to produce simpler set of equations 

 Common expansion is in ratio of vertical to horizontal length scales (𝜀 = [ℎ]

[𝑙]
) 

 E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(𝜀2) 

 Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

 Depth-integrated 

 “Shallow Ice” and “Shallow-Shelf” approximations (accurate to O(𝜀) ) 

 Special case of approximate Stokes with 2D equation set 

 Easiest to work with computationally, generally less accurate 

 

 

 

     



Block-Structured Local Refinement 

 Refined regions are organized into rectangular 

patches. 

 

 

 

 

 

 

 

 

 Algorithmic advantages: 

 Build on mature structured-grid discretization 

methods. 

 Low overhead due to irregular data structures, 

relative to single structured-grid algorithm. 



Linear Solvers – GAMG vs. Geometric MG 



BISICLES Results – Pine Island Glacier  

 Cornford, et al, JCP (2011, submitted) 

 PIG configuration from LeBrocq: 
 Bathymetry:  combined Timmerman (2010), Jenkins (2010), Nitsche (2007) 

 AGASEA thickness 

 Isothermal ice, A=4.0× 10−17 𝑃𝑎−
1

3 𝑚−1/3𝑎  

 Basal friction chosen to roughly agree with Joughin (2010) velocities 

 Specify melt rate under shelf: 

 𝑀𝑠 =  

0                      𝐻 < 50𝑚
1

9
𝐻 − 50          50 ≤ 𝐻 ≤ 500𝑚 

                     50                       𝐻 > 500 𝑚                       

 m/a 

 Constant surface flux = 0.3 m/a 

 Evolve problem – refined meshes follow the grounding line. 

 Calving model and marine boundary condition at calving front 

 



PIG (cont) 



PIG, cont 

Coloring is ice velocity, 𝛤𝑔𝑙 is the grounding line. Superscripts denote number 

of refinements. Note resolution-dependence of 𝛤𝑔𝑙 

Initial Condition Solution after 30 years 



Amundsen Sea Sector 

• Regional Model 

• Heavy subshelf melting drives 

retreat (up to 100 m/a) 

• Melt rate function of depth 

(strongest melting near GL) 

• 4 km base mesh  

• 3 levels of refinement  

(2km, 1km, 500m) 

• Courtesy of Steph Cornford 

 

 



Filchner-Ronne/Ross 

• Light melting (< 5 m/a) 

• 5 km base resolution  

• 2 refinement levels  

(2.5km, 1.25km)  

• “few hours” for 32 processors 

to evolve for 50 yrs 

• Courtesy of Steph Cornford 

•   



Interface with Glimmer-CISM  

 Glimmer-CISM has coupler to CESM, additional physics 

 Well-documented and widely accepted 

 Our approach – couple to Glimmer-CISM code as an 

alternate “dynamical core” 

 Allows leveraging existing Glimmer-CISM capabilities  

 Use the same coupler to CESM 

 BISICLES code sets up within Glimmer-CISM and maintains its 

own storage, etc. 

 Communicates through defined interface layer 

 Instant access to a wide variety of test problems 

 Interface development almost complete  

 Part of larger alternative “dycore” discussion for Glimmer-CISM 



Models and Approximations  

 Full-Stokes  
 Best fidelity to ice sheet dynamics 

 Computationally expensive (full 3D coupled nonlinear elliptic equations) 

 Approximate Stokes 
 Use scaling arguments to produce simpler set of equations 

 Common expansion is in ratio of vertical to horizontal length scales (𝜀 =  
[ℎ]

[𝑙]
) 

 E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(𝜀2) 

 Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

 Depth-integrated 
 Special case of approximate Stokes with 2D equation set (“Shelfy-stream”) 

 Easiest to work with computationally 

 Generally less accurate 

 

 

     



“L1L2” Model (Schoof and Hindmarsh, 2010) 

 Asymptotic expansion in 2 flow parameters: 

  -- ratio of length scales 
ℎ

𝑥
  

l – ratio of shear to normal stresses 
𝜏𝑠ℎ𝑒𝑎𝑟

𝜏𝑛𝑜𝑟𝑚𝑎𝑙
  

• Large l: shear-dominated flow 

• Small l: sliding-dominated flow 

 Blatter-Pattyn approximates full-Stokes to 𝑂 𝜀2  for all l regimes 

 

 Asymptotic expansion: (e.g. 𝑢 𝑥, 𝑧 =  𝑢0 + 𝜀𝑢1 + 𝑂(𝜀2) ) 

 Leading order velocity term:  𝑢0 = 𝑢0(𝑥)  (no vertical dependence) 

 Don’t need shear stresses to 𝑂 𝜀2  to compute velocity to 𝑂 𝜀2  

 Provides basis for depth-integrated approach 

 



“L1L2” Model (Schoof and Hindmarsh, 2010). 

 Uses asymptotic structure of full Stokes system to construct a 

higher-order approximation  

 Expansion in  -- ratio of length scales 
ℎ

𝑥
 

 Computing velocity to 𝑂(𝜀2) only requires τ to 𝑂(𝜀) 

 

 Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. (can reconstruct 3d) 

 

 Similar formal accuracy to Blatter-Pattyn 𝑂(𝜀2) 

 Recovers proper fast- and slow-sliding limits: 

• SIA   (1 ≪ 𝜆 ≤ 𝜀
−1

𝑛 ) --  accurate to 𝑂(𝜀2𝜆𝑛−2) 

• SSA  (𝜀 ≤ 𝜆 ≤ 1) – accurate to 𝑂(𝜀2) 

 



BISICLES results – Grounding line study 

 Bedrock topography based on Katz and 

Worster (2010) 

 Evolve initially uniform-thickness ice to 

steady state 

 Repeatedly add refinement and evolve 

to steady state 

 G.L. advances with finer resolution 

 Appear to need better than 1 km 

 



Discretizations 

 Baseline model is the one used in  

Glimmer-CISM: 

 Logically-rectangular grid, obtained 

from a time-dependent uniform 

mapping. 

 2D equation for ice thickness, coupled with 

2D steady elliptic equation for the horizontal 

velocity components. The vertical velocity is 

obtained from the assumption of 

incompressibility. 

 Advection-diffusion equation for temperature. 
 

 Use of Finite-volume discretizations (vs. Finite-difference discretizations) 

simplifies implementation of local refinement. 

 Software implementation based on constructing and extending existing solvers 

using the Chombo libraries. 
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Nonlinear Solvers 

 Most computational effort spent in nonlinear ice 

velocity solve. 

 Picard iteration:  

• Robust 

• Simple to implement 

• Slow (but steady) convergence 

 Jacobian-free Newton-Krylov (JFNK): 

• More complex to implement 

• Works best with decent initial guess 

• Rapid convergence 

• Well-suited for Chombo AMR elliptic solvers 

  Approach – use Picard iteration initially, then switch to 

JFNK when convergence slows 

 

 

 

 

 

 



Nonlinear Solvers (cont) 



 Ice-stream Simulation 

[based on Pattyn et al (2008)]: 

 High resolution is required to 

accurately resolve the ice stream. 

 AMR simulation allows high 

resolution around the ice stream 

at a fraction of the cost of a 

uniformly refined mesh. 

 

 

BISICLES Results 



Numerical Accuracy and Convergence 



Continental-scale: Antarctica 

• Ice2sea geometry 

• Temperature field from Pattyn and Gladstone 


