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BISICLES Ice Sheet Model 

q  Scalable adaptive mesh refinement (AMR) ice sheet model 
§  Dynamic local refinement of mesh to improve accuracy 

q  Chombo AMR framework for block-structured AMR 
§  Support for AMR discretizations 
§  Scalable solvers 
§  Developed at LBNL 
§  DOE ASCR supported (FASTMath) 

q  Collaboration with Bristol (U.K.) and LANL 
q  Variant of “L1L2” model   

(Schoof and Hindmarsh, 2010) 
q  Coupled to Community Ice Sheet  

Model (CISM). 
q  Users in Berkeley, Bristol,  

Beijing, Brussels, and Berlin… 



Why is this useful? (another BISICLE for another fish?) 

§  Ice sheets -- Localized regions where 
high resolution needed to accurately 
resolve ice-sheet dynamics (500 m or 
better at grounding lines) 

§  Antarctica is really big – too big to 
resolve at that level of resolution. 

§  Large regions where such fine 
resolution is unnecessary (e.g. East 
Antarctica) 

§  Well-suited for adaptive mesh 
refinement (AMR) 

§  Problems still large: need good 
parallel efficiency 

§  Dominated by nonlinear coupled 
elliptic system for ice velocity solve: 
good linear and nonlinear solvers  

 



Marine Ice Sheets 



Target Problems 

q  Idealized Ice-Ocean interaction test problems 

§  Simple/small geometries designed to understand GL 
dynamics and ice-ocean interactions 

§ MISMIP3D 
§ MISMIP+ 
§ MISOMIP 

q  Realistic full-scale 
§  Fully-resolved (500m)  

full-continent  
§ Antarctica  



BISICLES: Models and Approximations  

Physics: Non-Newtonian viscous flow: 𝜇( ​​𝜖↑2  ,T) = A(T)( ​​𝜖↑2  ​)↑​​
(1−𝑛)/2    
Where ​​𝜖 ↑2  is the strain rate invariant, typically 𝑛=3 
q  Full-Stokes  

§  Best fidelity to ice sheet dynamics 
§  Computationally expensive (full 3D coupled nonlinear elliptic equations) 

q  Approximate Stokes 
§  Use scaling arguments to produce simpler set of equations 

§  Common expansion is in ratio of vertical to horizontal length scales (𝜀= ​[ℎ]/

[𝑙] ) 
§  E.g. Blatter-Pattyn (most common “higher-order” model), accurate to O(​
𝜀↑2 ) 

§  Still 3D, but solve simplified elliptic system (e.g. 2 coupled equations)  

q  Depth-integrated 
§  “Shallow Ice” and “Shallow-Shelf” approximations (accurate to O(𝜀) ) 
§  Special case of approximate Stokes with 2D equation set 
§  Easiest to work with computationally, generally less accurate 
 

 
     



“L1L2” Model (Schoof and Hindmarsh, 2010). 

q  Uses asymptotic structure of full Stokes system to construct a 
higher-order approximation  

§  Expansion in != ​[𝐻]/[𝐿]  and l= ​[​𝜏↓𝑠ℎ𝑒𝑎𝑟 ]/[​𝜏↓𝑛𝑜𝑟𝑚𝑎𝑙 ]  (ratio of shear & 
normal stresses) 
•  Large l: shear-dominated flow 
•  Small l: sliding-dominated flow 

§  Computing velocity to 𝑂( ​𝜀↑2 ) only requires τ to 𝑂(𝜀) 
q  Computationally much less expensive -- enables fully 2D 

vertically integrated discretizations. (can reconstruct 3d) 

q  Similar formal accuracy to Blatter-Pattyn 𝑂( ​𝜀↑2 ) 
§  Recovers proper fast- and slow-sliding limits: 
•  SIA   (1≪𝜆≤ ​𝜀↑​−1⁄𝑛  ) --  accurate to 𝑂( ​𝜀↑2 ​𝜆↑𝑛−2 ) 
•  SSA  (𝜀≤𝜆≤1) – accurate to 𝑂( ​𝜀↑2 ) 

 



“L1L2” Model (Schoof and Hindmarsh, 2010), cont. 

q  Can construct a computationally efficient scheme: 

1.  Approximate constitutive relation relating 𝑔𝑟𝑎𝑑(𝑢) and stress field 𝜏 with 
one relating 𝑔𝑟𝑎𝑑( ​​𝑢|↓𝑧=𝑏 ), vertical shear stresses ​𝜏↓𝑥𝑧  and ​𝜏↓𝑥𝑧  given by 
the SIA / lubrication approximation and other components  ​𝜏↓𝑥𝑥 (𝑥,𝑦,𝑧),  ​
𝜏↓𝑥𝑦 (𝑥,𝑦,𝑧), etc 

2.  leads to an effective viscosity 𝜇(𝑥,𝑦,𝑧) which depends only on 𝑔𝑟𝑎𝑑( ​​𝑢|↓𝑧=𝑏 ) 
and 𝑔𝑟𝑎𝑑(​𝑧↓𝑠 ), ice thickness, etc  

3.  Momentum equation can then be integrated vertically, giving a nonlinear, 
2D, elliptic equation for ​​𝑢|↓𝑧=𝑏 (𝑥,𝑦)  

4.   𝑢(𝑥,𝑦,𝑧) can be reconstructed from ​​𝑢|↓𝑧=𝑏 (𝑥,𝑦) 



Modified “L1L2” Model (SSA*) 

q  Can construct a computationally efficient scheme: 
1.  Approximate constitutive relation relating 𝑔𝑟𝑎𝑑(𝑢) and stress field 𝜏 with 

one relating 𝑔𝑟𝑎𝑑( ​​𝑢|↓𝑧=𝑏 ), vertical shear stresses ​𝜏↓𝑥𝑧  and ​𝜏↓𝑥𝑧  given by 
the SIA / lubrication approximation and other components  ​𝜏↓𝑥𝑥 (𝑥,𝑦,𝑧),  ​
𝜏↓𝑥𝑦 (𝑥,𝑦,𝑧), etc 

2.  leads to an effective viscosity 𝜇(𝑥,𝑦,𝑧) which depends only on 𝑔𝑟𝑎𝑑( ​​𝑢|↓𝑧=𝑏 ) 
and 𝑔𝑟𝑎𝑑(​𝑧↓𝑠 ), ice thickness, etc  

3.  Momentum equation can then be integrated vertically, giving a nonlinear, 
2D, elliptic equation for ​​𝑢|↓𝑧=𝑏 (𝑥,𝑦)  

4.   𝑢(𝑥,𝑦,𝑧) can be reconstructed from ​​𝑢|↓𝑧=𝑏 (𝑥,𝑦) 

4.  Use  𝑢(𝑥,𝑦,𝑧) = ​​𝑢|↓𝑧=𝑏 (𝑥,𝑦)  (neglect vertical shear in flux velocity) 



Discretizations 
q  Baseline model: 

§  Logically-rectangular grid, obtained 
from a time-dependent uniform 
mapping. 

§  2D equation for ice thickness 

§  Ver$cally-integrated	momentum	balance	results	in	2D	nonlinear	viscous	tensor	solve	
(viscosity	a	func$on	of	velocity)	for	velocity	​​𝑢↓𝑏   at	the	base	of	the	ice:	

	
​𝛽↑2 ​​𝑢↓𝑏  + 𝛻∙[𝜇(​​𝜀 ↑2 )(​𝛻 + ​​𝛻 ↑𝑇 )​​𝑢↓𝑏  −2𝜇 (𝛻∙ ​​𝑢↓𝑏  )]= ​− ​𝑔/𝜌  𝐻 ​𝛻 𝑠		



​𝛽↑2 	=	fric$on	coefficient,	​𝜀 =	strain	rate	invariant	of	ice	velocity,	𝑔	=	gravity,			=	gravity,		
𝜌	=	ice	density,	𝐻	=	ice	thickness,	​𝛻 𝑠	=	horizontal	gradient	of	upper	surface 	=	ice	density,	𝐻	=	ice	thickness,	​𝛻 𝑠	=	horizontal	gradient	of	upper	surface 	=	ice	thickness,	​𝛻 𝑠	=	horizontal	gradient	of	upper	surface 	=	horizontal	gradient	of	upper	surface 

 
§  Enthalpy formulation (Aschwanden) for energy 

 
 

  

∂H
∂t

= b−∇ ⋅Hu



Discretizations, cont 

q  Use of Finite-volume discretizations (vs. Finite-difference 
discretizations) simplifies implementation of local refinement. 

q  Software implementation based on constructing and extending 
existing solvers using the Chombo libraries. 



AMR and Finite-Volumes 

q  AMR and finite-volume  
discretizations play well together: 
            𝐿(𝜑)= 𝛻∙ ​𝐹  

q  Complex discretizations at  
coarse-fine interfaces: 



Nonlinear Solvers 

q  Most computational effort spent in nonlinear ice 
velocity solve. 

q  Picard iteration:  
•  Robust 
•  Simple to implement 
•  Slow (but steady) convergence 

q  Jacobian-free Newton-Krylov (JFNK): 
•  More complex to implement 
•  Works best with decent initial guess 
•  Rapid convergence 
•  Well-suited for Chombo AMR elliptic solvers 

q   Approach – Picard iteration initially,  switch to JFNK 
when convergence slows 
 

 

 



Nonlinear Solvers (cont) 



Initialization 

q  Glen’s Law singularity (!!! as ​​𝜖 ↑2 →0) 
§ Regularization: use (​​𝜖 ↑2 + 𝛿) in Glen’s law (𝛿=𝑂(​10↑−12 )) 

q  Natural initial guess (u=0) too close to singularity 
§ Takes a lot of solver effort/iterations to push solution  

away from singularity 
§ Better idea – initial linear (constant !) solve  
•  Relatively inexpensive 
•  Pushes solution away from singularity -- reasonable initial 

guess for nonlinear solve 
•  (equivalent to homotopy/regularization with a large !) 

q  Natural form of grid sequencing from AMR  



Well-posedness 

q  Disconnected floating ice (icebergs) are ill-posed 

q  Can emerge through Ice dynamics (ice-ocean coupling) 

q  Can also emerge from AMR regridding – interpolation 

q  Solution – sweep domain for disconnected ice 
§  “Marching” scheme (start with grounded ice and march 

outward in repeated passes  
§ AMR-aware connected-components scheme (scalable) 
•  (Zou, Martin, et al (2015) ) 



Linear Solvers 

q  Need good linear solver performance! 
q  Chombo native solvers – Geometric MultiGrid (GMG) 

§  Follows Naturally from AMR hierarchy 

q  When it works, it works really well (after some tuning) 
§ Matrix-free! 
§ Relatively efficient 

q  Works well enough on  
some problems  
(Full-continent  
Antarctica!) 



Example – 1000-year Antarctic simulations 

q  Range of finest resolution from 8 km (no refinement) to 
500m (4 levels of factor-2 refinement) 

q  At initial time, subject ice shelves to extreme 
(outlandish) melting: 
§ No melt for h < 100m 
§ Range up to 800m/a where h > 400m. 
§ No melt applied in partially-grounded cells 

q  For each resolution, evolve for 1000 years 
q  Solver tolerances relatively loose 



Results: 



Linear Solvers, cont. 

q  However – GMG sometimes fails (stalls, diverges) 
§  Stalling – finer than 1 km resolution  
§  Failure – where Ice shelves are important  (Ice/ocean) 

q  Sharp/strong coefficient gradients (hard to coarsen) 

q  ​𝜷↑𝟐 !0  (Change from Parabolic ! Elliptic) at GL: 

​𝛽↑2 ​​𝑢↓𝑏  + 𝛻∙[𝜇(​​𝜀 ↑2 )(​𝛻 + ​​𝛻 ↑𝑇 )​​𝑢↓𝑏  −2𝜇 (𝛻∙ ​​𝑢↓𝑏  )]= ​− ​𝑔/𝜌  𝐻 ​𝛻 𝑠		
 

q  Solution – AMG (PETSc gamg/Hypre BoomerAMG) 



Linear Solvers – GAMG vs. Geometric MG 



MISOMIP (Asay-Davis et al (2015) ) 

Steady-state initial condition Fully-retreated condition 

•  Marine Ice Sheet-Ocean Model Intercomparison Project 
•  Ice Sheet coupled to Ocean Model through melt rates 
•  Driven by far-field forcing –  
•  0 < t < 100 years: Warm  Phase (1 C) 
•  100 < t < 200 years: Cold Phase (-1.9 C) 



MISOMIP  



MISOMIP 



MISOMIP – Solver Convergence 



FAS Multigrid nonlinear solver 

q  Full Approximation Storage (FAS) – nonlinear multigrid 

q  Picard, JFNK:  
§  linear solver nested inside of nonlinear one 
§  Linear Multigrid solvers (residual-correction form) work well. 

q  FAS Multigrid – fully nonlinear solver (no outer solver) 
§ Can outperform JFNK/MG  
§ More robust (don’t need good initial guess) 
§  Simpler to implement and maintain  
§ Nonlinear convergence similar to MG linear convergence 
 



FAS Multigrid nonlinear solver (cont) 

Solution time for 8 cores on linux desktop: 
FAS-MG: 715 s      JFNK-MG: 1128 s  
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Extras 



Grounding-line dynamics experiments 

q  Series of ice-sheet modeling community model 
intercomparison projects designed to understand issues 
in modeling of GLs 
§ MISMIP, MISMIP3D, MISMIP+ 

q  All point to a need for very fine spatial resolution to get 
GL dynamics right (sub-km in most cases) 

q  Prime use case for adaptive mesh refinement (AMR) 



BISICLES Results - MISMIP3D 

q  Begin with steady-state (equilibrium) 
grounding line. 

q  Add Gaussian slippery spot perturbation 
at center of grounding line 

q  Ice velocity increases, GL advances. 
q  After 100 years, remove perturbation. 
q  Grounding line should return to original 

steady state. 
q  Figures show AMR calculation:  

§  ​∆𝑥↓0 =6.5𝑘𝑚 base mesh,  
§  5 levels of refinement 

§  Finest mesh ​∆𝑥↓4 =0.195𝑘𝑚. 
§  t = 0, 1, 50, 101, 120, 200 yr 

q  Boxes show patches of refined mesh. 
q  GL positions match Elmer (full-Stokes) 

Experiment P75R:   
(Pattyn et al (2011) 



MISMIP3D (cont): L1L2 (SSA*) Spatial Resolution 

•  Very fine (~200 m) resolution needed to achieve reversability! 
 



MISMIP3D: SSA vs. “L1L2” or “SSA*” 

•  Direct comparison of SSA vs. SSA*  
•  (fully resolved spatially, same numerics, etc) 
•  Note difference in steady-state GL positions 



BISICLES Results – Ice2Sea Amundsen Sea 

q  Study of effects of warm-water incursion into Amundsen Sea. 

q  Results from Payne et al, (2012), submitted.  
q  Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction 

and damage coefficients to match Joughin 2010 velocity. 

q  Background SMB and basal melt rate chosen for initial equilibrium. 

q  SMB held fixed. 
q  Perturbations in the form of additional subshelf melting:  

§  derived from FESOM circumpolar deep water  
§  ~5 m/a in 21st Century,   
§  ~25 m/a in 22nd Century.  



Ice2Sea Amundsen (cont) 

 
q Need at least 2 km 

resolution to get any 
measurable 
contribution to SLR. 

q Appears to converge at 
first-order in ∆x 

SLR vs. year, Amundsen 
Sea Sector 



Ice2Sea Amundsen (cont) – Thwaites? 

•  In 400 year run, Thwaites destabilizes as well. 

•  Essentially same forcing as previous run, subshelf melting 
held constant past 2200. 
•  More melting: extra 5 m/a 

•  Thwaites is very stable, until it tips. 

 



Antarctica (Ice2Sea)   
•  Refinement based on Laplacian(velocity), grounding lines 
•  5 km base mesh with 3 levels of refinement  

•  base level (5 km): 409,600 cells (100% of domain) 
•  level 1 (2.5 km):  370,112 cells (22.5% of domain) 
•  Level 2 (1.25 km): 955,072 cells (14.6% of domain) 
•  Level 3 (625 m):  2,065,536 cells (7.88% of domain) 

 
 
 



Parallel scaling, Antarctica benchmark 

(Preliminary scaling result – includes I/O and serialized initialization) 



Linear Solvers – GAMG vs. Geometric MG 



Temporal Discretization 

Update equation for H:  ​𝜕𝐻/𝜕𝑡 + 𝛻∙(​𝑢 𝐻)=𝑆 
q  “looks” like hyperbolic advection equation (explicit scheme, 

Courant stability -- ∆𝑡 ∝ ∆𝑥) 
q  Velocity field has 𝛻𝐻 piece – diffusion equation for H (∆𝑡 ∝ ​∆𝑥↑2 !) 

q  Strategy (Cornford) – try to factor out diffusive flux and 
discretize as an advection-diffusion equation: 

q  ​𝐹 = ​𝑢 𝐻= ​​𝐹 ↓𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 + ​​𝐹 ↓𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒  
q  ​​𝐹 ↓𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 =−𝐷 𝛻𝐻 
q  Now solve: ​𝜕𝐻/𝜕𝑡 + 𝛻∙ ​​𝐹 ↓𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 = 𝛻∙(𝐷 𝛻𝐻)+𝑆 

q  Advective fluxes: explicit update using unsplit 2nd Order PPM scheme 
q  Diffusive fluxes: implicit update (Backward Euler for now) 



Temporal Discretization (cont) 

q  Test case based on ISMIP-HOM A geometry 
q  ∆𝑥=2.5 𝑘𝑚, ​∆𝑡↓𝐶𝐹𝐿  = 5 a 
 

 
q  Unfortunately, still run into stability issues finer than ∆𝑥<0.5 𝑘𝑚 

Explicit advance Semi-implicit advance 



Linear Solvers – GAMG vs. Geometric MG 



MISMIP3D: Mesh resolution 

q  Plot shows grounding line 
position ​𝑥↓𝐺𝐿  at 𝑦=50𝑘𝑚 
vs. time for different spatial 
resolutions. 

q  ∆𝒙=𝟎.𝟏𝟗𝟓𝒌𝒎 →𝟔.𝟐𝟓 𝒌𝒎 

q  Appears to require finer than 
1 km mesh to resolve 
dynamics 

q  Converges as O(∆𝑥)            
(as expected) 



Block-Structured Local Refinement 

q  Refined regions are organized into rectangular 
patches. 

 
 
 
q  Algorithmic advantages: 

§  Build on mature structured-grid discretization 
methods. 

§  Low overhead due to irregular data structures, 
relative to single structured-grid algorithm. 



BISICLES results – Grounding line study 
q  Bedrock topography based on Katz and 

Worster (2010) 
q  Evolve initially uniform-thickness ice to 

steady state 
q  Repeatedly add refinement and evolve 

to steady state 
q  G.L. advances with finer resolution 
q  Appear to need better than 1 km 



BISICLES Results 

q  Ice-stream Simulation 
[based on Pattyn et al (2008)]: 
§  High resolution is required to 

accurately resolve the ice stream. 
§  AMR simulation allows high 

resolution around the ice stream 
at a fraction of the cost of a 
uniformly refined mesh. 



Numerical Accuracy and Convergence 



MISMIP+ 

q  “Child of MISMIP3D” 
§  Examined GL response of models to a localized change in bed friction 
§  Clarified resolution requirements for reversible GL dynamics 
§  Large variation in steady-state GL position among models 
§  Conclusions about dynamical results clouded by this difference 
§  Said nothing about response to subshelf melt forcing (buttressing?) 

q  Specific details still under development  
§  Steady-state with reduced variation between models 
•  Steady-state on upward-sloping bed (buttressing) -- Gudmundsson (2012) 
•  Narrow-ish channel (still under discussion) 

§  Perturbation due to subshelf melt anomaly – GL retreat 
§  Reversibility? (return timescale seems long) 
§  Primary contact – Steph Cornford (Bristol) 


