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One likely climate driver for marine ice-sheet instability is subshelf melting driven by warm(ing) ocean water intruding into subshelf cavities. Modeling this will require coupled ice sheet-ocean modeling in an earth
system model (ESM), on multi-decadal to century timescales employing high spatial and temporal resolution. Target resolution for this work: Ocean: 0.1 Degree, Ice sheet: 500 m (using adaptive mesh refinement).

Numerical Models
Ice Sheet — BISICLES

* Very fine resolution (better than 1 km) is needed to resolve dynamic features
like grounding lines and ice streams — computationally prohibitive for uniform-
resolution studies of large ice sheets like Antarctica.

 Large regions where finest resolution is unnecessary
— ideal application for adaptive mesh refinement (AMR).

e Block-structured AMR: 5 -

* Refine in logically-rectangular patches.

* Amortize cost of irregular operations over large number of

regular structured-mesh operations.
Sample AMR meshes — black mesh is base level

(0), blue mesh (level 1) is a factor of 2 finer, while
red (level 2) is 4 times finer still

* Finite-volume discretizations simplify coarse-fine coupling.
* Simplifies dynamic regridding to follow changing features.

* BISICLES is built upon the LBNL-developed Chombo AMR C++/Fortran
framework, which supports scalable block-structured AMR applications.

* Modified version of the Schoof-Hindmarsh (2010) model (“SSA*”)

* Following Schoof and Hindmarsh, using SIA-like relation to compute stress allows vertical integration
resulting in a simplified 2D nonlinear elliptic system for ice velocity at the bed.

* Differ from standard L1L2 method by ignoring vertical shear when reconstructing flux velocities —
reasonable approximation in fast-moving regions which improves numerical stability (SSA*).

* Compares well with full-Stokes results in MISMIP3D experiments

Ocean Model — POP2x

* Ocean model of the Community Earth System Model (CESM)
 z-level, hydrostatic, Boussinesq

e Modified to include cavities under ice shelves: -

e partial top cells
* boundary-layer method of Losch (2008)

e Subshelf melt rates computed by POP:
 Methods of Holland and Jenkins (1999),
Jenkins et al. (2001), and Losch (2008)
* sensitive to vertical resolution
* nearly insensitive to transfer coefficients, tidal
velocity, drag coefficient
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In POP, partial bottom cells discretize bathymetry. POP2x extends
this approach to include partial top cells at upper ice-shelf/ocean
boundaries, allowing computation of circulation in ice-shelf cavities.

Coupling to POP2x through CISM

BISICLES is coupled to the Community Ice Sheet Model (CISM) as an external

dynamical core, callable from CISM.

* Synchronous-offline coupling: BISICLES and POP exchange information at
fixed coupling intervals.

* Monthly coupling interval arrived at through experimentation

* CISM-BISICLES — POP2x: Instantaneous ice draft, ice shelf basal temperature,
grounding line locations.

* POP2x — CISM-BISICLES: Time-integrated subshelf melt rates

» Offline coupling using standard CISM and POP NetCDF file I/0O.

 POP bathymetry and ice draft recomputed:

* smoothing bathymetry and ice draft, thickening ocean column, ensuring connectivity
* TandSin new cells extrapolated iteratively from neighbors

* barotropic velocity held fixed; baroclinic velocity modified where ocean column
thickens/thins

Motivation

The Story so Far:

Coupled Antarctica-Southern Ocean
Previous (EGU 2015) Attempts at Coupled Runs (failed)
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Initial Coupled Run: (left) BISICLES Antarctic Ice Sheet — initial velocity field, (center) POP Southern Ocean
domain — barotropic velocity, (right) Coupled simulation — movie frame showing POP-computed melt
rates painted onto the Ross Ice Shelf. Blue colormap depicts grounded ice speed.

* Used Bedmap?2 (2013) geometry for ice and ocean (Ice thickness, topography)

* |nitialize Antarctic Ice Sheet (AIS) velocities to match Rignot (2011).

* BISICLES Ice Sheet 500m finest spatial resolution (8 km coarsest mesh)

e AIS initially in steady-state -- compute synthetic accumulation field for
equilibrium with POP melt rates computed in a standalone spinup run.

 POP2x Ocean Model: Regional Southern Ocean domain (50-85°S)

e 0.1° (~5 km ) horizontal resolution; 80 vertical levels (10m-250m)

* Monthly restoring to World Ocean Atlas (WOA) data at northern boundaries

e Climatology -- Common Ocean-ice Reference Experiments: (CORE) Interannual
Forcing (CORE-IAF)

e 20-year standalone run to initialize, followed by 20-year coupled run.

* Ran on NERSC's Edison (Cray xc30) — 15,000 CPU hours/simulation year.

Lessons Learned (2015)

* Warm bias:
 CORE-IAF produces too much melting (warm bias due to mixing of CDW
into upper ocean, too much stratification from freshwater forcing — ocean
model issue.)
* Coupled problem dominated by “regrounding instability”:
* Ocean cavity thickness artificially set to one meter below many ice shelves
(e.g. Getz) where bathymetry data is lacking. RS
 combines with high melt rates to create instability: gmj
* thickness fluctuations of O(cavity thickness)
e causes localized regrounding event.
* |ocal regrounding removes subshelf melt Tt ot
nartt of the mass balance, resulting in large unbalanced accumulation
e Result: catastrophic ice-shelf grounding. (Nonphysical artifact of
artificially thin subshelf cavities, amplified by synthetic SMB fields)

Primary lesson: Need new bedmap

Modified Bedmap

* Need improved bedmap for coupled runs.
* Where possible, preserve upper ice surface . -
* Approach for modifying bathymetry: T
* Use new observations (Greenbaumetal, . = b o
2015) for Totten. Y

* Use RTOPO1 to deepen (rather than v
simply replace) bathymetry under most wseomms & T A
ice shelves in the Amundsen and Mo " * ¢
Bellingshausen regions. [ % AT

* Cavities under Dalton, Nivlisen,
Shackleton, and Stange ice shelves
thickened based on the distance from the grounding line. (ad hoc)

* Smooth discontinuities between grounded and floating sections.

* Topography under grounded ice was deepened in regions (Rutford, Pine
Island Ice Streams) to better match velocity observations (mass-conserving
bed (Nais et al, 2015, Cornford et al, 2016) ).

Max: 876.9

Min: <1601, Difference between modified bedmap and original

Bedmap?2 topography. Blue means deepening.

Getz Sector

Original Bedmap?2 (left) and modified (right) bathymetry under Getz Ice shelf — note deepened channels from RTOPO1

Amundsen Sea Sector

Original Bedmap?2 (left) and modified (right) bathymetry under Pine Island and Thwaites Systems

Next Steps

* POPSICLES code modifications necessitated by NERSC changes are underway
* Relaxed/spun-up AIS initial condition on modified bed based on “present-day”
(Rignot) observations has been generated.
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* New 20-year coupled run planned with more realistic forcing.
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