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Land Ice Sheets - coupling with Oceans
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Motivation: Projecting future Sea Level Rise

Q Potentially large Antarctic contributions to SLR resulting

from marine ice sheet instability, particularly from
WAIS.

a Climate driver: subshelf melting driven by warm(ing)
ocean water intruding into subshelf cavities.

Q Melt-driven thinning, loss of shelf buttressing lead to
grounding-line retreat.

Q Paleorecord implies that WAIS has deglaciated in the
past.

o
. — e
U.S. DEPARTMENT OF Oﬁlce Of cerrens ”ﬁl' ~— Vé v g
ENERGY Science @?g?@lgg : hﬁﬂgm&? ERISl%Ii

EST. 1943

PAENT Op
£ &
5\
& 5
) /&
b“}n THs O 4




DOE Context - PISCEES and ACME

Part of the DOE “big picture” in climate

a PISCEES (Predicting Ice Sheet and Climate Evolution at Extreme Scales)

..........

= DOE-sponsored (SciDAC2) ice-sheet modeling effort ';‘ .
» Leverages DOE modeling, HPC capabilities

= Dycore development
 BISICLES - block-structured finite-volume AMR, L1L2
« FELIX - Finite Element unstructured mesh, Blatter-Pattyn/ Stokes

= |pitialization, UQ, V&V

a ACME (Accelerated Climate Model for Energy)

= DOE-sponsored ESM effort
« 3 science questions (#3 is cryospheric contribution to SLR)

= Starting point is CESM
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Big Picture -- target

Aiming for coupled ice-sheet-ocean ... =
modeling in ESM

Multi-decadal to century timescales

Target resolution:
Ocean: 0.1 Degree
lce-sheet: 500 m (adaptive)
Why put an ice-sheet model into an ESM? I
fuller picture of sea-level change -

feedbacks may matter on
timescales of years, not millenia

Credible projections require
correct GL dynamics
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Grounding-line dynamics experiments

Q Series of ice-sheet modeling community model
intercomparison projects designed to understand issues
in modeling of GLs

= MISMIP, MISMIP3D, MISMIP+

a All point to a need for very fine spatial resolution to get
GL dynamics right (sub-km in most cases)

Q Prime use case for adaptive mesh refinement (AMR)
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BISICLES Ice Sheet Model

Q Scalable adaptive mesh refinement (AMR) ice sheet model
= Dynamic local refinement of mesh to improve accuracy

aQ Chombo AMR framework for block-structured AMR
= Support for AMR discretizations
= Scalable solvers
= Developed at LBNL
= DOE ASCR supported (FASTMath)

Collaboration with Bristol (U.K.) and LANL

Q Variant of “L1L2” model
(Schoof and Hindmarsh, 2009)

O Coupled to Community Ice Sheet
Model (CISM).

Q Users in Berkeley, Bristol,
Beijing, Brussels, and Berlin...
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BISICLES Results - MISMIP3D
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After 100 years, remove perturbation.

O Grounding line should return to original It
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O  Figures show AMR calculation: I=

S M _:
= Ax,= 6.5km base mesh, _ | _' 'LT%L e . % ; i
= 5 levels of refinement = L IEE T e | i il
= Finest mesh Ax,= 0.195km. ¢ _ nj%@ ﬁﬁ .
= t=0, 1,50, 101, 120, 200 yr &~ AL T il
O Boxes show patches of refined mesh. A SV I A ]
O GL positions match Elmer (full-Stokes) o w0 w0 w0 s (m) (m)

X (km)
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MISMIP3D: Mesh resolution

Q Plot shows grounding line

position x.; at y = 50km vs. ?
time for different spatial
resolutions. o r
Q0 Ax=0.195km - 6.25km £ |
E . \_\_\_\_
O Appears to require finer than ~
1 km mesh to resolve -
dynamics
Finest resglution (km)
-— 625 ——|156 — 0.391
o — 312 e |(.78] e 0,195
aQ Converges as O(Ax) S | | |

0 50 100 150 200

(as expected)

time, t (years)
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MISMIP3D (cont): Spatial Resolution

A¥pin=6.25 km A min = 0.391 km
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» Very fine (~200 m) resolution needed to achieve full reversibility!
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Pine Island Glacier (Cornford, Martin, et al, JCP)
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Initial Condition Solution after 30 years

Coloring is ice velocity, I, is the grounding line. Superscripts denote number
of refinements. Note resolution-dependence of I,
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Amundsen Sea (Cornford, Martin et al, The Cryosphere, accepted)

SLR vs. year, Amundsen

Q Need at least 2 km Sea Sector
resolution to get any
measurable S 0- 0o _
. . - =
contribution to SLR. B - 10 E
% — 20 E
Q Sub-km is better. 8 -10 ~ -0
< — 4km - 40 8
o — 2 km &
@ = 1km — 50 3
Q Appears to converge at ¢ — 500m
. . 250 — 60
first-order in Ax 20 0
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GL Resolution requirements

Q Not model-specific; reported by many authors
» Full-Stokes (Elmer - Durand et al)
» Hybrid SSA-SIA (PISM-PIK)

Q Such resolution requirements are inconvenient, at best.

Q Point to the fact that in models with hydrostatic
formulations, GL is a singular point (set)
= Basal friction drops to zero

= SSA-type equations go
from parabolic to elliptic
= Surface slopes are

discontinuous (one-sided dlfferencmgz A X
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Other approaches

Q Sub-km mesh resolution requirements are inconvenient
at best for continental-scale models.

Q Many attempts to handle this through subgrid-scale
models

= Transition zones (Pattyn)

= Partial-cell parameterization (Gladstone et al, Seroussi et
al)

» More complicated asymptotics - (Leguy et al)
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Embedded Boundary (EB) for Grounding Lines
» Embedded Boundary (EBChombo)

 Currently force GL and ice margins to cell faces

%
.

SN
L

.

 “Stair-step” discretization

Known to be inadequate from experience with
Stefan Problem in other contexts!

2

* Use Chombo Embedded-boundary support to
improve discretization of GL’s and ice margins.

 Can solve as a Stefan Problem, with appropriate
jump conditions enforced at grounding line.
(as in Schoof, 2007)
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Flowline (1D) model problem

« Based on Vieli and Payne (2005)
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« SSA Momentum balance reduces to:
9 9 ds
( — 5z (4uH a)) up = —pgh 5=

“

« Mass Conservation reduces to:
aa—l;l+ V-(uH) = Src
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Multifluid formulation

O Can conceive of the grounding line problem as a phase-change across a
multifluid interface (Stefan problem)

Q Discretization follows Crockett, Colella, and Graves (2011)

Time=3763.947 years

d
4
/

Multivalued cell
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Multifluid Velocity Solve

Multifluid discretization (Crockett et al, 2011)
Grounded, floating “phases” discretized independently
Phases communicate via interface jump relations
Quadratic interpolation/extrapolation to interface
Velocity-solve jump relations (1D):

[H] =0

[u] =0

[up] = 0

[] = [u52] =0

O 0O 0O 0O O

Q System currently solved exactly (Gaussian elimination)
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Multifluid Velocity Solve (cont)

a Multifluid extrapolation to faces:

<> <>
AX KAX

a Multivalued cell-centered value for each phase in MF cell

Q Avoid “small-cell problem” (K— 0) by not using partial
cell values in stencils

O Need quadratic extrapolant to preserve accuracy
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Multifluid Velocity Solve (cont)

Q Initial velocity solve
Q Red dashed line: “regular” discretization Ax =195m
a Green line, multifluid discretization, Ax =1500m
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Advection - GL advance/retreat

Two possible advection/evolution options:

1. Explicitly move GL based on local thickness change and
basal slope. (stability constraint based on gl speed)

1. Recompute GL every time based on finding the levelset
where thickness over flotation is zero.

A. Use finite-volume formulation -
i. Compute face-centered thickness fluxes (uH)
ii. Update entire multivalued cell normally.
iii. Recompute levelset location based on new thickness field.
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Example - 1D Grounding-line advance

a Planar slope, constant friction g = 1000, constant
snowfall (m = 10m/a).
Q Linear-in-x initial H profile (non-linear shelf velocity)

..................

Time= 0.00 years
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Example - 1D Grounding-line advance (cont)
Convergence of initial velocity field

L1(err)

L1 »velocity Error L2 »velocity Error
le+07 . 100000
L1(EB) L2(EB)
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Example - 1D Grounding-line advance (cont)
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Example - 1D Grounding-line advance (cont)
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Example - 1D Grounding-line advance (cont)

Grounding-point Motion

Grounding line location vs. time
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Conclusions

Q Fine (sub 1-km) resolution required to get grounding
lines right for “normal” models

Q Evidence suggests that better discretizations at
grounding lines may help relax resolution requirement

Q Can treat GL as multifluid interfaces between 2 phases
Q 1D SSA Test code looks promising
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Future work

Q Further 1D testing:
= | 1L2

aQ 2D (planview) SSA and L1L2

Q (Hopefully) incorporation into “mainline” BISICLES
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Extras
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BISICLES Results - Ice2Sea Amundsen Sea

Q Study of effects of warm-water incursion into Amundsen Sea.

Q Results from Payne et al, (2012), submitted.

O Modified 1996 BEDMAP geometry (Le Brocq 2010), basal traction
and damage coefficients to match Joughin 2010 velocity.

Q Background SMB and basal melt rate chosen for initial equilibrium.

O SMB held fixed.

Q Perturbations in the form of additional subshelf melting:
= derived from FESOM circumpolar deep water

= ~5m/ain 21t Century,
= ~25m/ain 22" Century.

o
iy : o /)
:#‘ _ U.S. DEPARTMENT OF Office of @?g?@lgg _'_'/:>| A /= BUL Universicn of
EN ERGY Science ' LS amas BRISTOL

EST. 1943




