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' Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)
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inertial terms neglected

- Model for the evolution of the boundaries
(thickness evolution equation)
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- Temperature equation
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- Coupling with other climate components (e.g. ocean, atmosphere) h Sandia
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Stokes Approximations

“Reference” model: STOKES!

0(5 2) FO, Blatter-Pattyn first order model* (3D PDE, in horizontal
velocities)

O (5 ) Zeroth order, depth integrated models:
SIA, Shallow Ice Approximation (slow sliding regimes) ,
SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

~ 0(52) Higher order, depth integrated (2D) models: L1L2°, (L1L1)...

'Gagliardini and Zwinger, 2008. The Cryosphere.
*Dukowicgz, Price and Lipscomb, 2010. J. Glaciol.

*Schoof and Hindmarsh, 2010. Q. J. Mech. Appl. Math. h Sandia
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‘ Felix overview

* Felix' (Finite Element Land Ice eXperiments) is a C/C++ finite element
implementation® of land ice models. It relies on Trilinos for data structure, for the
solution of linear/nonlinear solvers and for adjoint/UQ capabilities.

* Models currently implemented are SIA, SSA, L1L2 and FO, which have been tested’
against Ismip-Hom experiments and CISM simulations.

* The nonlinear system are solved using Newton method with exact Jacobian +
continuation of regularization parameters to increase robustness.

* It is interfaced with the land ice modulus of MPAS (climate library, implements ocean
and atmosphere models). Realistic simulation has been for ice2sea projects.

» Even if adjoint and UQ capabilities are in early development, Felix can leverage on
several trilinos packages which introduce great flexibility. Among these we have:
- Dakota, MOOCHO (Optimization / UQ)
- Sacado (Automatic Differentiation)

Software currently developed under the DOE project PISCEES
“www.trilinos.sandia.org (albany), www.lifev.org '11 Sanda
SPerego, Gungburger, Burkardt, Journal of Glaciology, 2012
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http://www.lifev.org/

Outline

* Felix's features for solving Forward problems
- scalability of solvers
- nonlinear solver options

- coupling with the climate library MPAS
- ice2sea runs

e Preliminary work on Inverse/UQ problems
- UQ study on synthetic problems
- Adjoint-based inversion for initial state
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' Greenland steady state “benchmark”

Greenland, 2km resolution, no-slip
FO steady problem used for scalability and convergence tests
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Greenlad data: courtesy of J. Bamber and J. Griggs (Univ. of Bristol) as part of the Ice2Sea project. 'I‘ Loportois




Greenland, FO: scalability results

Nonlinear Solver: Newton with exact Jacobian (NOX)

Linear Solver: CG/Gmres (BELOS)
Preconditioner: Additive Schwarz (IFPACK) with direct solver KLU on each subdomain.
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Non linear solvers
Newton/Picard on Greenland
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' Non linear solvers

Increased Robustness with LOCA continuation method

M. P, A. Salinger

picard
newton
newt. + loca

residual

iterations

The parameter § is decreased by LOCA from le-4 to 1e-9

I'm feeling lucky approach: for subsequent time steps, try solving Newton first, with a limited
maximum number of iterations (say 10), if Newton does not converge, then use LOCA. [rjy) iaion
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1
' Non linear solvers
Increased Robustness with LOCA continuation method

Antarctica continuation on sliding coefficient

velocity magnitfude
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Interface MPAS - FELIX

M. Hoffman (LANL), M. P

-
MPAS

Land ice component

- 2D CVT mesh
(Stereographic projection)

- thickness/elevation/layers

- temperature/ice flow factor
- bedrock sliding coefficient

- solver options:
* model (FO, L1L2, SSA, SIA)
* nonlinear solver (Newton, Picard, JFNK)
* Boundary condition (free-slip, no-slip, robin, coulomb)

>

F 3

velocity

heat dissipation

viscosity

FELIX

ice-sheets component
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' Greenland surface velocity

Comparison CISM, MPAS-FELIX

SEACISM

MPAS-FELIX simulations: SEACISM (ORNL, SNL) simulations: A vandia|

M. Perego (FSU) and M. Hoffman (LANL) S. Price (LANL) Laboratories




Ice2Sea* experiment: thickness change

*A.J. Payne et al, PNAS, submitted, to be considered for the IPCC 2014 report .
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UQ Problem
M. Eldred, I. Kalashnikova, A. Salinger

A4

synthetic simulation settings

Dome problem:

solution_ Y
: eme==s . . 89.392394
Parabolic shaped dome geometry _ = o

0

-40
--80
-89.39239

Isothermal

Sliding b.c. at the bedrock, with friction
coefficient:

B=Bo+prx+Poy+Bzr, r=+/2°+y*

Forward run: 5y = 2.9, 61 = 0.012, 5y = —0.002, 53 = —0.005.
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UQ Problem

M. Eldred, I. Kalashnikova, A. Salinger

Bayesian inversion Study on Dome problem

A priori distribution:
Bo ~ U(2.4,4)
51, B2, B3 ~ U(—0.015,0.015).

Bayesian inversion details:

- 100 synthetic (calibration)
data points

- A polynomial chaos
“reduced order model” was
constructed with 200 runs

- a posteriori distribution
computed using the
reduced order model

A posteriori distribution:
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Inverse Problem
Estimation of ice-sheet initial state

M. P, S. Price (LANL) and G. Stadler (UT)

The goal is to find initial conditions such that the ice is almost at thermo-mechanical
equilibrium* given the geometry and the SMB.

Arthern, Gudmundsson, J. Glaciology. 2010

*Price, Payne, Howat and Smith, PNAS 2011

Morlighem Thesis 2011

Brinkerhoff, Meierbachtol, Johnson, Harper, Annals of Glaciology, 2011
Habermann, Maxwell, Truffer;, J. Glaciology. 2012

Pollard DeConto, TCD 2012
Sandi
Petra, Zhu, Stadler;, Hughes, Ghattas, J. Glaciology , 2012. II'I B':ELOE%M




Inverse Problem
Estimation of ice-sheet initial state

M. P, S. Price (LANL) and G. Stadler (UT)

The goal is to find initial conditions such that the ice is almost at thermo-mechanical
equilibrium* given the geometry and the SMB.

Optimization Problem:
find 8 that minimizes the functional J (blue term not used in simulations)

1 1
J1(B) = §/F\div(UH)—TS\2ds+§/F u— u®®2ds + R(p).

such that the ice sheet model equations (FO or Stokes) are satisfied

U: computed depth averaged velocity
H': ice thickness

B: basal sliding friction coefficient

Ts: SMB

R(B) regularization term

Sandia
*Price, Payne, Howat and Smith, PNAS 2011 ) tetiona
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A 4

Preliminary Simulation, using the SMB from Price et al, PNAS 2011

Inverse Problem
Estimation of ice-sheet initial state

o

T ep—

-0.002

0

Left: Estimated 3 [kPa yr m~!]. Center: target SMB [km/yr].
Right: flux divergence [km/yr] computed with the estimated .
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Inverse Problem
Estimation of ice-sheet initial state

Possible causes of the mismatch between the target and the computed SMB:

- Incorrect conditions at the lateral boundary (here we prescribe stress free b.c.).

- Incorrect temperature field (interpolated linearly between the surface temperature and
the temperature at basal assumed equal to zero.

- Errors in the model (e.g. uncertainty on the Glen exponent).

- Incorrect (noisy) thickness/bedrock topography.

Possible fix for the noisy bedrock topography*:

- Modify the cost functional so that the ice thickness can slightly differ from the observed
thickness:

j2(67H):j1(5)+a7H/’H—HObS‘QdS.
I

In this way we hope to filter the noise and to get thickness/bedrock topography that are
consistent with the ice-sheet equations.

*Morlighem, Rignot, Seroussi, Larour, Ben Dhia, Aubry, Geophysical Research Letters, 2011

. Sandia
*Jessie Johnson, LIWG 2013 ll'l National
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Thank you for your attention!
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