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Brief introduction and motivation

* Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for

sea level rise in next decades to centuries.

Sea level rise predictions are important for policy makers.
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Brief introduction and motivation

* Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for
sea level rise in next decades to centuries.

Sea level rise predictions are important for policy makers.

 Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

Bedrock

from http://www.climate.be
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Brief introduction and motivation

* Modeling ice sheets (Greenland and Antarctica) dynamics is essential to provide estimates for
sea level rise in next decades to centuries.
Sea level rise predictions are important for policy makers.

* Ice behaves like a very viscous shear-thinning fluid (similar to lava flow).

» Greenland and Antarctica ice sheets store most of the fresh water on hearth.
They have a shallow geometry (thickness up to 3km, horizontal extensions of thousands of
km).

Computed surface velocity magnitude [m/yrs
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Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

V-u=0
with:
_' . 1 (9’&1, 8uj
0=24D—~®I,  Dyu) = (axj + 8:137;)
Nonlinear viscosity:
1 4
p=5a(T) D)™, pe(1,2] (tipically p~ )

Viscosity is singular when ice is not deforming

- Model for the evolution of the boundaries
(thickness evolution equation)
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Ice Sheet Modeling

Coupling
—V-o(u) =pg in Qy OH
{v-u:o in Qy 5 = "V (@H)+0, inX

For grounded ice:

s> Q= {(z,y,2) | 2 =b(z,y) + H(x,y), (z,y) € ¥}
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Ice Sheet Modeling

Coupling
—V-o(u) =pg in Qy OH
{v.u:o in Oy 5 = VvV (@H)+0, inX

System typically coupled in a sequential way:
1. given H"™ solve Stokes system for u™
2. compute 6™ and solve thickness hyperbolic equation for H" !

Issue: stable only for tiny time steps.
Time steps satistying CFL condition do NOT guarantee stability

Why? We need to simplify the equations in order to understand this.
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Stokes approximations in different regimes

Stokes(u, p) in 2 € R?

_ . , _
: 3 Uy 5 (U —I_ (% 5 (U _|_ T
Quasi-hydrostatic ) > (ty ) ?( w7)
approximation D(u) = | 3 (uy +vz) vy 3 (v + wy)

Scaling argument i M 5 Wy W, |

based on the fact that
ice sheets are shallow p=pg(s—z) = 2pu(uy + vy)

\J

First Order* or ) 3
Blatter-Pattyn FO(’LL, U) in 2R

model

- - 2uy + 3 (uy +vg
—V - <2luD) = —pgVyy(H + D) D(u,v) = [ ) e vy g (y )

1
Uz
2 (uy + vz) Uy + 20y %vz

Coercive system for the horizontal components of the velocity

‘Dukowicz, Price and Lipscomb, 2010. J. Glaciol



Stokes approximations in different regimes

FO(u,v) in Q € R?

, , Ice regime: Ice regime:
grounded ice with frozen bed shelves or fast sliding grounded ice
(0 0 tu, | I Uy T(uy+vg) 0]
D=|0 0 v, D= | % (uy+uvy) Vy 0
i 0 0 w, | i 0 0 Wy |
p = pg(s — z) p=pg(s —z) = 2u(us +vy)

\J

SIA (u,v) in Q € R? SSA(u,v) in ¥ € R?

Shallow Ice Approximation Shallow Shelf Approximation

S EE N L L L L L

Hybrid models, ~ STA+ SSA




SIA coupled with thickness evolution

It is possible to compute the SIA solution in closed form. For constant flow rate we get

[ ; ] =C((s—2)"™ — H"™)|Vs|" Vs,  (s=H+b)

Substituting the expression of the velocity into the thickness evolution equation*

OH
o Hdiv(nVH) =0~ div(yVb),  withn = CLH? — CoH" | Vs|"™!

Which is a nonlinear elliptic equation H.

‘ In the limit case of shallow ice on frozen bedrock, the thickness evo-
lution equation is not hyperbolic but elliptic.
We have a diffusive CFL condition**: At < CFLgig(Ax)?

Note: coupling the thickness evolution equation with SSA we obtain an
integro-differential equation that does not feature a diffusive term.

*Fowler, ice sheets and glaciers, 1997
**Bueler and Brown, JGR, 2009




Possible strategies to couple momentum and
thickness evolution equations

1. Sequential coupling. Possibly use adaptive time steps that relies on notion of diffusive
CFL, as computed using SIA approximation. Requires many time steps.

2. Operator splitting*: try to identify “diffusive” and “advective” parts of operator and
solve the evolution equation with a IMEX scheme.

u = augia + (1 — a) ugsa

Hard to identify “diffusive” part in Stokes and FO models.

3. Solve implicitly the coupling between momentum and thickness equations.

4. Use non-intrusive optimization-based coupling (see talk by M. D'Elia, afternoon
session) so that momentum and thickness evolution equations can be solved in stand
alone codes. General, but possibly expensive.

*PISM, Parallel Ice Sheet Model.



Results using sequential approach
(Ice2Sea experiment A.J. Payne et al, PNAS 2013)

FO eq. solved using the finite
element implementation in
Albany [SNL].

1-30

Evolution eq. solved using
the finite volume
implementation in MPAS
[LANL]
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Surface velocity magnitude [km/yr] Thickness [m] change after 100 yr

Sequential approach works fine for relatively coarse meshes (here is 5km resolution).
However our goal is to use resolution of 1km, 500m and in this case the approach

becomes prohibitive. National
Laboratories




Implicit coupling of Stokes and thickness evolution equation

/_\

—V o) = pg  in Qpesn Hn+1l) _ gn
{ V. u®tD) — in Qg A + V- (ﬁ(n+1) H(n+1)) — gn

\_/

This implicit discretization should mitigate the stability issues but is very expensive because
the geometry is changing during the iterations. (Using Newton method we need to compute

shape derivatives).

Idea: when using FO the thickness is exposed in the momentum equation and we may
not need to to change the domain.

V. (Mf) (u<n+1>)) —pgV (b+ H" D) in Qg pplnt1) _
V- urth = in Qgn At

+ V - (ﬁ(TH—l) H(n—i—l)) — g




Working with external code limitations

MPAS (climate library, LANL) | Albany-FELIX (finite element, SNL)

unstructured explicit finite 1 » unstructured finite element method
volume on Voronoi grids.

solves for thickness equation as | solves FO for velocity
a tracer transported by ice | u
velocity (upwind method).

Need to improve overall solution acting only on the velocity solver.
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Solution obtained with sequential

coupling, dt =1 yr

Reference solution computed
with sequential approach and
time step of 5 months.
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Future development

 Investigate robustness/efficiency of the implicit method on real geometries/problem.

» Study mathematical and numerical properties of the scheme.

» Solve thickness evolution as an obstacle problem* (variational inequality) in order
to avoid negative thickness and solve more accurately the margin of ice sheets.

Thank you!

*Ed Bueler, AGU meeting, 2014
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